El coche autónomo¿un futuro mejor?

  1. Valero-Matas, Jesús Alberto 1
  2. De la Barrera, Angie 2
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

  2. 2 Department of Transportation, Arlington, Virginia
Journal:
Sociología y tecnociencia: Revista digital de sociología del sistema tecnocientífico

ISSN: 1989-8487

Year of publication: 2020

Issue Title: Search and count the disappearance: techniques and methods; I-III

Volume: 10

Issue: 1

Pages: 136-158

Type: Article

More publications in: Sociología y tecnociencia: Revista digital de sociología del sistema tecnocientífico

Abstract

This article wants to analyze the technical and social dimensions of the autonomous car . Much is talked about the autonomous vehicle, which holds a better future. where there will be fewer accidents, will change the way people act, will bring great social and industrial developments. These vehicles will improve the safety and quality of life of people, wider urban spaces, less pollution and endless progress according to the opinion of experts. The automobile industries as well as some technology companies are working hard, because they want to be the first to build a fully autonomous vehicle. But on the other hand, people do not know in what phase the vehicles are located, how many levels there are, how an autonomous car works, how it will affect the industry, the market and everyday life. There are many gaps and questions to ask, as well as we can solve cybercrime or ethical issues arising from driving, before autonomous cars operate.

Bibliographic References

  • Alonso L, Milane´s V, Torre-Ferrero C, Godoy J, Oria JP, De Pedro T. (2011). Ultrasonic sensors in urban traffic driving-aid systems. Sensors 11:661–673
  • Bartoli,C., Tettamanti, T. & Varga, I. (2017). Critical features of autonomous road transport from the perspective of technological regulation and law, Transportation Research Procedia, 27:791-798. 10.1016/j.trpro.2017.12.002.
  • Brummelan, J., Van, et. al. (2018). Autonomous vehicle perception: The technology of today and tomorrow, Transportation Research Part C, 89: 384-406. https://doi.org/10.1016/j.trc.2018.02.012
  • Chasel, L. (2017). Grabbing the Wheel Early: Moving Forward on Cybersecurity and Privacy Protections for Driverless Cars. Federal Communications Law Journal,. 69 (1): 25-52.
  • Chen, Lv, et al. (2018). Analysis of autopilot disengagements occurring during autonomous vehicle testing, Journal of Automatica Sinica IEEE/CAA 5(1): 58-68. 10.1109/JAS.2017.7510745
  • Daziano, R, Sarrias, M. & Leard, B. (2017). Are consumers willing to pay to let cars drive for them? Analyzing response to autonomous vehicles, Transportation Research Part C, 78:150-164. 10.1016/j.trc.2017.03.003
  • Folsom T. (2012). Energy and autonomous urban land vehicles. IEEE Technol Soc Mag 2:28–38
  • Goodall, N.J. (2016). Can you program ethics into a self-driving car? IEEE Spectrum; 53 (6): 28-58.
  • Hansson S.O. (2012). A panorama of the philosophy of risk. In: Roeser S, Hillerbrand R, Sandin P, Peterson M (eds) Handbook of risk theory. (pp. 27–54), Springer Science, Dordrecht.
  • HIS. (2010). New estimates of benefits of crash avoidance features on passenger vehicles, In: report, S. (Ed.), (pp. 4–50) Insurance Institute for Highway Safety,
  • Ioannou, P. (ed.) (2013). Automated highway systems. Springer Science & Business Media Lombard, A., et.al (2016) Lateral Control of an Unmaned Car Using GNSS Positionning in the Context of Connected Vehicles, Procedia Computer Science, 98:148-155. 10.1016/j.procs.2016.09.023
  • Loon RJ van & Martens MH. (2015). Automated driving and its effect on the safety ecosystem: how do compatibility issues affect the transition period? Procedia Manuf, 3,3280–3285. Doi: 10.1016/j.promfg.2015.07.401
  • Milchelferder, D.P. (2018). Risk, disequilibrium, and virtue, Technology in Society, 52:32-38. DOI: 10.1016/j.techsoc.2017.01.001
  • NHTSA. (2013). http://www.nhtsa.gov/About±NHTSA/Press? Releases/U.S.? Department?of? Transportation? Releases? Policy?on? Automated?Vehicle?Development.
  • Nyholm, S. & Smids, J. (2016). The Ethics of Accident-Algorithms for Self-Driving Cars: an Applied Trolley Problem? Ethic Theory Moral Practice 19 (5): 1275- 1289 https://doi.org/10.1007/s10677-016-9745-2
  • Piao J, & McDonald, M. (2008). Advanced driver assistance systems from autonomous to cooperative approach. Transp Rev 28:659–684
  • Purves D, Jenkins R & Strawser BJ. (2015). Autonomous machines, moral judgment, and acting for the right reasons. Ethical Theory Moral Pract 18:851–872
  • Qingquan, L. et.al. (2014). Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR. Sensors, 14 (9): 16672-16691. 10.3390/s140916672.
  • Ring, T. (2015). Feature: Connected cars– the next targe for hackers, Network Security, 11:11-16. 10.1016/S1353-4858(15)30100-8.
  • Shi, L & Prevedourus, P. (2016). Autonomous and Connected Cars: HCM Estimates for Freeways with Various Market Penetration Rates, Transportation Research Procedia, 15:389-402. 10.1016/j.trpro.2016.06.033
  • Smolnicki, P.M. & Soltys, J. (2016). Driverless Mobility: The Impact on Metropolitan Spatial Structures, Procedia Engeniering 161:2184-2190. DOI: 10.1016/j.proeng.2016.08.813,
  • Tesla. (2018). Autopilot. https://www.tesla.com/es_ES/autopilot
  • Wang, H., et. al. (2017). Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle, Robotics and Autonomous Systems, 88:71-78. 10.1016/j.robot.2016.11.014
  • Wang, S., Deng, Z. & Yin, G. (2016). An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints, Sensors, 16, (3): 280. https://doaj.org/article/a2eedb4ddba74f83b88007e2f5a9adc9
  • Weber, M. (2014). Where to? a history of autonomous vehicles. Available at http://www.computerhistory.org/atchm/where-to-ahistory-of-autonomous-vehicles.