Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemas

  1. Izquierdo Millán, Luis Rodrigo
  2. Galán Ordax, José Manuel
  3. Santos Martín, José Ignacio
  4. Olmo Martínez, Ricardo del
Revista:
Empiria: Revista de metodología de ciencias sociales

ISSN: 1139-5737

Año de publicación: 2008

Número: 16

Páginas: 85-112

Tipo: Artículo

DOI: 10.5944/EMPIRIA.16.2008.1391 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Empiria: Revista de metodología de ciencias sociales

Objetivos de desarrollo sostenible

Referencias bibliográficas

  • ARMATTE, M. (2006): «La Noción de Modelo en las Ciencias Sociales». Empiria: Revista de metodología de ciencias sociales 11, pp. 33-70.
  • ARROYO, M. & HASSAN, S. (2007): «Simulación de procesos sociales basada en agentes software». Empiria: Revista de metodología de ciencias sociales 14, pp. 139-161.
  • AXELROD, R. (1997a): Advancing the Art of Simulation in the Social Sciences. En Conte R, Hegselmann, R. & Terna, P. (Eds.) Simulating Social Phenomena, Lecture Notes in Economics and Mathematical Systems 456: 21-40. Berlin: Springer-Verlag.
  • AXELROD, R. (1997b): The complexity of cooperation: Agent based models of competition and collaboration. Princeton NJ: Princeton University Press.
  • AXTELL, R. (2000): «Why agents? On the varied motivations for agent computing in the social sciences». En Macal, C. M. & Sallach, D. (eds.), Proceedings of the Workshop on Agent Simulation: Applications, Models, and Tools, pp. 3-24. Argonne, IL: Argonne National Laboratory.
  • BASS, F. M. (1969): «A new product growth for model consumer durables».Management Science 15(5), pp. 215-227.
  • BERTALANFFY, L. (1968): General System Theory. New York: George Braziller Publisher.
  • BÖHM, C. & JACOPINI, G. (1966): «Flow diagrams, turing machines and languages with only two formation rules». Communications of the ACM 9(5), pp. 366-371.
  • BORSHCHEV, A., FILIPPOV, A., KENNEDY, M., WINCH, W. G., LANGER, R. S., ROWE, J. I. & YANNI, J. M. (2004): «From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques,Tools». En Proceedings of the 22nd International Conference of the System Dynamics Society. Albany, NY: Systems Dynamics Society.
  • BOUSQUET, F. & LE PAGE, C. (2004): «Multi-agent simulations and ecosystem management: A review». Ecological Modelling 176(3-4), pp. 313-332.
  • CONTE, R., HEGSELMANN, R. & TERNA, P. (1997): «Simulating Social Phenomena». Lecture Notes in Economics and Mathematical Systems 456.
  • CRUZ, M. M. B. (2007): «Evaluando la dinámica de sistemas como una herramienta para enseñar Historia». Revista de Dinámica de Sistemas 3(2), pp. 3-60.
  • CHRISTLEY, S., XIANG, X. & MADEY, G. (2004): «Ontology for agent-based modeling and simulation». Agent 2004 Conference on Social Dynamics: Interaction, Reflexivity and Emergence, Chicago, IL. Argonne National Laboratory & The University of Chicago.
  • DROGOUL, A., VANBERGUE, D. & MEURISSE, T. (2003): «Multi-Agent Based Simulation: Where are the Agents?» En Sichman, J. S., Bousquet, F. & Davidsson, P. (eds.), Lecture Notes in Computer Science 2581. Proceedings of MABS 2002 Multi-AgentBased Simulation, pp. 1-15. Bologna, Italy: Springer-Verlag.
  • EDMONDS, B. & HALES, D. (2005): «Computational simulation as theoretical experiment». Journal of Mathematical Sociology 29(3), pp. 209-232.
  • EDMONDS, B., MOSS, S. & DAVIDSSON, P. (2001): «The Use of Models making MABS actually work». In, Multi-Agent-Based Simulation, Lecture Notes in Artificial Intelligence 1979, pp. 15-32. Berlin: Springer-Verlag.
  • ELLIS, R. E. (2007): «El impacto del comercio con China en las economías y sociedades de América Latina». Revista de Dinámica de Sistemas 3(2), pp. 85-116.
  • EPSTEIN, J. M. (2006): «Remarks on the Foundations of Agent-Based Generative Social Science». En Amman, H. M., Kendrick, D. A. & Rust, J. (eds.), Handbook of Computational Economics 2, pp. 1585-1604. North-Holland.
  • EPSTEIN, J. M. & AXTELL, R. L. (1996): Growing Artificial Societies: Social Science from the Bottom Up. The MIT Press.
  • FORD, A. (1997): «System dynamics and the electric power industry». System Dynamics Review 13(1), pp. 57-85.
  • FORD, D. N. & STERMAN, J. D. (1998): «Dynamic modeling of product development processes». System Dynamics Review 14(1), pp. 31-68.
  • GALÁN, J. M. & IZQUIERDO, L. R. (2005): «Appearances can be deceiving: Lessons learned re-implementing Axelrod’s ‘evolutionary approach to norms’». Journal of Artificial Societies and Social Simulation 8(3), Artículo 2.
  • GALÁN, J. M., IZQUIERDO, L. R., IZQUIERDO, S. S., SANTOS, J. I., OLMO, R., LÓPEZPAREDES, A. & EDMONDS, B. (2008): «Errors and artefacts in agent-based modelling». Enviado a Journal of Artificial Societies and Social Simulation.
  • GILBERT, N. (2002): «Varieties of Emergence». En MACAL, C. & SALLACH, D. (eds.), Social Agents: Ecology, Exchange, and Evolution. Agent 2002 Conference, pp. 41- 50. Chicago: University of Chicago and Argonne National Laboratory.
  • GILBERT, N. (2004): «Agent-based social simulation: Dealing with complexity». Centre for Research on Social Simulation, University of Surrey.
  • GILBERT, N. (2007): Agent-Based Models. Quantitative Applications in the Social Sciences. London: SAGE Publications.
  • GILBERT, N. & TERNA, P. (2000): «How to build and use agent-based models in social science». Mind and Society 1(1), pp. 57-72.
  • GILBERT, N. & TROITZSCH, K. G. (1999): Simulation for the Social Scientist. Buckingham, UK: Open University Press.
  • GOTTS, N. M., POLHILL, J. G. & LAW, A. N. R. (2003): «Aspiration levels in a land use simulation». Cybernetics & Systems 34(8), pp. 663-683.
  • HAREL, D. (1980): «On folk theorems». Communications of the ACM 23(7), pp. 379-389.
  • HESSE, M. B. (1963):Models and Analogies in Science. London: Sheed and Ward.
  • HOLLAND, J. H. (1998): Emergence. From chaos to order. Reading, MA: AddisonWesley.
  • HOMER, J. B. & HIRSCH, G. B. (2006): «System Dynamics Modeling for Public Health: Background and Opportunities». American Journal of Public Health 96(3), pp. 452-458.
  • HUGHES, R. G. (1997): «Models and Representation». Philosophy of Science 64(4), pp. S325-S336.
  • IZQUIERDO, L. R., IZQUIERDO, S. S., GALÁN, J. M. & SANTOS, J. I. (2008a): «Techniques to understand computer simulations: Markov chain analysis». Enviado a Journal of Artificial Societies and Social Simulation.
  • IZQUIERDO, L. R., IZQUIERDO, S. S., GOTTS, N. M. & POLHILL, J. G. (2007): «Transient and asymptotic dynamics of reinforcement learning in games». Games and Economic Behavior 61(2), pp. 259-276.
  • IZQUIERDO, S. S., IZQUIERDO, L. R. & GOTTS, N. M. (2008b): «Reinforcement learning dynamics in social dilemmas». Journal of Artificial Societies and Social Simulation, 11(2), Articulo 1.
  • JOHNSON, P. E. (1999): «Simulation modeling in political science». American Behavioral Scientist 42(10), pp. 1509-1530.
  • JOHNSON, S. (2001): Emergence: the connected lives of ants, brains, cities, and software. New York: Scribner.
  • KLEIJNEN, J. P. C. (1995): «Verification and validation of simulation models». European Journal of Operational Research, 82(1), pp. 145-162.
  • KLEINDORFER, G. B., O’NEILL, L., & GANESHAN, R. (1998): «Validation in simulation: Various positions in the philosophy of science». Management Science, 44(8), pp. 1087-1099.
  • KOHLER, T. & GUMERMAN, G. J. (2000): Dynamics in human and primate societies: Agent-based modeling of social and spatial processes. New York: Oxford University Press & Santa Fe Institute.
  • LEBARON, B. (2000): «Agent Based Computational Finance: Suggested Readings and Early Research». Journal of Economic Dynamics & Control 24(5-7), pp. 679-702.
  • LEOMBRUNI, R. & RICHIARDI, M. (2005): «Why are economists sceptical about agentbased simulations?» Physica A: Statistical Mechanics and its Applications 355(1), pp. 103-109.
  • LÓPEZ PAREDES, A. & HERNÁNDEZ IGLESIAS, C. (2008): Agent Based Modelling in Natural Resource Management. Insisoc. España. ISBN 978-84-205-4560-8.
  • LUKE, S., CIOFFI-REVILLA, C., PANAIT, L., SULLIVAN, K. & BALAN, G. (2005): «MASON: A Multiagent Simulation Environment». Simulation 81(7), pp. 517-527.
  • LYNEIS, J. M. & FORD, D. N. (2007): «System dynamics applied to project management: A survey, assessment, and directions for future research». System Dynamics Review 23(2-3), pp. 157-189.
  • MANSURY, Y. & DEISBOECK, T. S. (2004): «Simulating the time series of a selected gene expression profile in an agent-based tumor model». Physica D: Nonlinear Phenomena 196(1-2), pp. 193-204.
  • MANSURY, Y., KIMURA, M., LOBO, J. & DEISBOECK, T. S. (2002): «Emerging Patterns in Tumor Systems: Simulating the Dynamics of Multicellular Clusters with an Agentbased Spatial Agglomeration Model». Journal of Theoretical Biology 219(3), pp. 343-370.
  • MARTÍNEZ, J. & ESTEVE, M. A. (2007): «Gestión integrada de cuencas costeras: dinámica de los nutrientes en la cuenca del Mar Menor (sudeste de España)». Revista de Dinámica de Sistemas 3(1), pp. 2-23.
  • MOSS, S., EDMONDS, B., &WALLIS, S. (1997): «Validation and Verification of Computational Models with Multiple Cognitive Agents». Centre for Policy Modelling Report, No. 97-25.
  • MOSS, S., GAYLARD, H., WALLIS, S. & EDMONDS, B. (1998): «SDML: A Multi-Agent Language For Organizational Modelling». Computational & Mathematical Organization Theory 4(1), pp. 43-63.
  • MOSS, S. (2008): «Alternative Approaches to the Empirical Validation of Agent-Based Models». Journal of Artificial Societies and Social Simulation, 11(1), Artículo 5.
  • NELSON, M., BURKHART, R., LANGTON, C. & ASKENAZI, M. (1996): «The Swarm Simulation System: A Toolkit for Building Multi-Agent Simulations». SFI Working Paper 96-06-042.
  • NORTH, M. J., COLLIER, N. T. & VOS, J. R. (2006): «Experiences Creating Three Implementations of the Repast Agent Modeling Toolkit». ACM Transactions on Modeling and Computer Simulation 16(1), pp. 1-25.
  • OSTROM, E., GARDNER, R. & WALKER, J. (1994): Rules, Games, and Common-Pool Resources. Ann Arbor: University of Michigan Press
  • PARKER, M. T. (2001): «What is Ascape and Why Should You Care?» Journal of Artificial Societies and Social Simulation 4(1), Artículo 5.
  • PARUNAK, H. V. D., SAVIT, R. & RIOLO, R. L. (1998): «Agent-based modeling vs. equation-based modeling: A case study and users’ guide». En SICHMAN, J. S., CONTE, R. & GILBERT, N. (eds.),Multi-Agent Systems and Agent-Based Simulation, Lecture Notes in Artificial Intelligence 1534, pp. 10-25. Berlin, Germany: Springer-Verlag.
  • PATON, R., GREGORY, R., VLACHOS, C., SAUNDERS, J. & WU, H. (2004): «Evolvable social agents for bacterial systems modeling». IEEE Transactions on Nanobioscience 3(3), pp. 208-216.
  • PIGNOTTI, E., EDWARDS, P., PREECE, A., POLHILL, J. G. & GOTTS, N. M. (2005): «Semantic support for computational land-use modelling». 5th International Symposium on Cluster Computing and the Grid (CCGRID 2005), Cardiff, UK. Piscataway, NJ: IEEE Press.
  • POLHILL, J. G., GOTTS, N. M. & LAW, A. N. R. (2001): «Imitative and nonimitative strategies in a land use simulation.» Cybernetics & Systems 32(1-2), pp. 285-307.
  • POLHILL, J. G., PIGNOTTI, E., GOTTS, N. M., EDWARDS, P. & PREECE, A. (2007): «A Semantic Grid Service for Experimentation with an Agent-Based Model of LandUse Change». Journal of Artificial Societies and Social Simulation 10(2), Artículo 2.
  • RAILSBACK, S. F., LYTINEN, S. L. & JACKSON, S. K. (2006): «Agent-based Simulation Platforms: Review and Development Recommendations». Simulation 82(9), pp. 609-623.
  • REYNOLDS, C. W. (1987) «Flocks, Herds, and Schools: A Distributed Behavioral Model». Computer Graphics, 21(4), pp. 25-34.
  • RODRIGUES, A. & BOWERS, J. (1996): «System dynamics in project management: A comparative analysis with traditional methods». System Dynamics Review 12(2), pp. 121-139.
  • ROGERS, E. M. (1962): Diffusion of Innovation. New York: Free Press.
  • SANSORES, C. & PAVÓN, J. (2005): «Simulación Social Basada en Agentes». Inteligencia Artificial: Revista Iberoamericana de Inteligencia Artificial 9(25), pp. 71-78.
  • SANSORES, C., PAVÓN, J. & GÓMEZ-SANZ, J. (2006): «Visual modeling for complex agent-based simulation systems.» En SICHMAN, J. S. & ANTUNES, L. (eds.), MultiAgent-Based Simulation VI, International Workshop, MABS 2005, Utrecht, The Netherlands, July 25, 2005, Revised and Invited Papers, Lecture Notes in Computer Science 3891, pp. 174-189. Berlin Heidelberg: Springer.
  • SARGENT, R. G. (2003): «Verification and Validation of Simulation Models». En CHICK, S., SÁNCHEZ, P. J., FERRIN, D. & MORRICE, D. J. (Eds.) Proceedings of the 2003 Winter Simulation Conference: 37-48. Piscataway, NJ: IEEE.
  • SCHELLING, T. C. (1971): «Dynamic Models of Segregation». Journal of Mathematical Sociology, 1(2), pp. 143-186.
  • SCHOLL, H. (2001): «Agent-based and system dynamics modeling: A call for cross study and joint research». En Proceedings of the 34th Annual Hawaii International Conference on System Sciences (HICSS-34) Vol. 3.
  • SHAN, Y. & YANG, A. (2008): Applications of Complex Adaptive Systems. IGI Publishing.
  • SQUAZZONI, F. (2008): «The Micro-Macro Link in Social Simulation». Sociologica 1/2008, doi: 10.2383/26578.
  • STERMAN, J. D. (2000): Business Dynamics: Systems thinking and modeling for a complex world. McGraw Hill.
  • SUBER, P. (2007): «Formal Systems and Machines: An Isomorphism». Hand-out for «Logical Systems». Earlham College.
  • TAYLOR, A. J. (1983): «The Verification of Dynamic Simulation Models». Journal of the Operational Research Society, 34(3), pp. 233-242.
  • TESFATSION, L. (2002): «Agent-based computational economics: growing economies from the bottom up». Artificial life 8(1), pp. 55-82.
  • TESFATSION, L. (2003): «Agent-based computational economics: modeling economies as complex adaptive systems». Information Sciences 149(4), pp. 263-269.
  • TORSUN, I. S. (1995): Foundations of Intelligent Knowledge-based Systems. New York: Academic Press.
  • VICSEK, T. (2002): «Complexity: The bigger picture». Nature 418(6894), pp. 131-131.
  • WALKER, D. C., HILL, G., SMALLWOOD, R. H. & SOUTHGATE, J. (2004a): «Agent-based computational modelling of wounded epithelial cell monolayers». IEEE Transactions on Nanobioscience 3, pp. 153-163.
  • WALKER, D. C., SOUTHGATE, J., HILL, G., HOLCOMBE, M., HOSE, D. R., WOOD, S. M., MAC NEIL, S. & SMALLWOOD, R. H. (2004b): «The epitheliome: agent-based modelling of the social behaviour of cells». Biosystems 76(1-3), pp. 89-100.
  • WILENSKY, U. (1999): NetLogo. Evanston, IL Center for Connected Learning and Computer-Based Modeling, Northwestern University. http://ccl.northwestern.edu/ netlogo/.
  • WINDRUM, P., FAGIOLO, G., & MONETA, A. (2007): «Empirical Validation of AgentBased Models: Alternatives and Prospects». Journal of Artificial Societies and Social Simulation, 10(2), Artículo 8.