La transformación integral y la convolución de Hankel de funciones y distribuciones

  1. Rodríguez Mesa, Lourdes
unter der Leitung von:
  1. Jorge Juan Betancor Pérez Doktorvater/Doktormutter

Universität der Verteidigung: Universidad de La Laguna

Jahr der Verteidigung: 1997

Gericht:
  1. José Manuel Méndez Pérez Präsident/in
  2. María Isabel Marrero Rodríguez Sekretär/in
  3. Joan Cerdà Martín Vocal
  4. Félix López Fernández-Asenjo Vocal
  5. Ángel Rodríguez Palacios Vocal

Art: Dissertation

Teseo: 60518 DIALNET lock_openRIULL editor

Zusammenfassung

EN LA TESIS SE INVESTIGA LA CONVERGENCIA PUNTUAL DE LAS INTEGRALES PARCIALES DE HANKEL, SE INTRODUCEN LOS LLAMADOS ESPACIOS DE LIPSCHITZ-HANKEL Y DE BESOV-HANKEL, QUE SON CARACTERIZADOS MEDIANTE LAS INTEGRALES PARCIALES DE HANKEL Y LAS MEDIAS DE BOCHNER-RIESZ. SE DISCUTE LA INTEGRABILIDAD DE LAS TRANSFORMADAS DE HANKEL DE FUNCIONES EN OPORTUNOS ESPACIOS DE LIPSCHITZ-HANKEL. SE ANALIZA EL COMPORTAMIENTO DE LA TRANSFORMACION Y LA CONVOLUCION DE HANKEL SOBRE DISTRIBUCIONES DE CRECIMIENTO EXPONENCIAL. SE CONSIDERAN LAS ECUACIONES DE CONVOLUCION HANKEL EN ESPACIOS DE FUNCIONES GENERALIZADAS DE CRECIMIENTO LENTO Y EXPONENCIAL, INTRODUCIENDO EL CONCEPTO DE HIPOELIPTICIDAD PARA LOS OPERADORES DE CONVOLUCION HANKEL Y CARACTERIZANDOLO A TRAVES DEL CRECIMIENTO DE LA TRANSFORMADA DE HANKEL DE TALES OPERADORES. SE INTRODUCEN NUEVOS ESPACIOS DE DISTRIBUCIONES TRANSFORMABLES HANKEL, QUE SON IDENTIFICADOS CON CIERTA CLASE DE OPERADORES QUE CONMUTAN CON LA CONVOLUCION DE HANKEL.