Integración numérica de sistemas lineales perturbados

  1. Reyes Perales, José Antonio
unter der Leitung von:
  1. José Manuel Ferrándiz Leal Doktorvater
  2. Jesús Vigo-Aguiar Doktorvater/Doktormutter

Universität der Verteidigung: Universitat d'Alacant / Universidad de Alicante

Fecha de defensa: 12 von Juni von 2003

Gericht:
  1. Regino Criado Herrero Präsident/in
  2. Ana Isabel Alonso de Mena Sekretärin
  3. Enrique Luazana Iriondo Vocal
  4. Desmont Higham Vocal
  5. Juan F. Navarro Llinares Vocal

Art: Dissertation

Teseo: 92887 DIALNET lock_openRUA editor

Zusammenfassung

Se han introducido métodos de calculo de las G-funciones matriciales inspirados en los desarrollos de Walz y el método de extrapolación de Richardson, que permiten extender el calculo de exponenciales escolares a exponenciales matriciales, A partir de los desarrollos en serie de G-funciones matriciales se han obtenido métodos multipaso de paso variable que generalizan los esquemas escalares SVF, estando definidos estos para orden arbitrario y pudiendo funcinar como pues predictor-corrector. La propiedad más notable es que integran exactaamente sistemas lineales no perturbados y un error de truncación local contiene al pequeño parámetro de perturbación E, como factor en problemas perturbados. Se presentan ejemplos numéricos ya utilizados por otros autores que muestran como los nuevos métodos desarrollados en esta tesis pueden competir o aventajar en precisión o eficiencia a otros algoritmos inmerecidamente afamados.