Estudio de viabilidad del proceso de recuperación del fósforo contenido en las aguas residualesUna aproximación económica

  1. Molinos Senante, María
  2. Sala Garrido, Ramón
  3. Hernández Sancho, Francesc
Journal:
Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA

ISSN: 1575-605X

Year of publication: 2010

Volume: 11

Issue: 1

Pages: 179-195

Type: Article

More publications in: Rect@: Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA

Abstract

Phosphorus is an essential, non-renewable resource and his discharged to the environment causes serious negative impacts. Therefore, phosphorus recovery from wastewater has become a necessity for sustainable development. Despite the scarcity of this element, nowadays the selling price of phosphate rock is lower than phosphorus recovery, which means that there are no economic incentives for the implementation of recovery technologies of this nutrient. This paper shows a methodology to assess the economic feasibility of wastewater phosphorus recovery project taking into account not just the internal impact, but also the external impact. For this, using the directional distance function the shadow price of phosphorus is estimated, which represents an approach to the environmental benefits obtained to prevent its discharge. Likewise, an empirical application of this methodology is carried out in a sample of wastewater treatment plants (WWTPs) that at present don´t have any treatment for phosphorus removal or recovery. The quantification and incorporation of the environmental benefit in the economic feasibility studies for phosphorus recovery projects shows that this process is viable not only from environmental point of view but also from an economic perspective.

Bibliographic References

  • US Geological Survey, 2005. Phosphate rock. http://minerals.er.usgs.gov/minerals/pubs/commodity/phosphate_rock/phospmcs05.pdf.
  • EcoSanRes (2005). http://www.ecosanres.org/pdf_files/Fact_sheets/ESR4lowres.pdf
  • Steen, I. “Phosphorus availability in the 21st century management of a non-renewable resource”, Phosphorus and Potassium, 217 (1998): 25-31.
  • Florida Institute of Phosphate Research. (2005). Phosphorus prime.
  • Jasinki, S.M., Kramer, D.A., Ober, J.A. y Searls, J.P. “Fertilizers- Sustaining Global Food Suplies”, USGS Fact Sheet FS (1999): 155-199.
  • Römer, W. “Vergleichende Untersuchungen zur Pflanzenverfügbarkeit von Phosphat aus verschiedenen P-Recycling-Produkten im Keimpflanzenversuch”, J. Plant Nutr. Soil Sci., 169 (2006): 826-832.
  • Shu, L., Schneider, P., Jegatheesan, V. y Johnson, J. “An economic evaluation of phosphorus recovery as struvite from digester supernatant”, Bioresource Technology, 97 nº17 (2006): 2211- 2216.
  • Marti, N., Pastor, L., Bouzas, A., Ferrer, J. y Seco, A. “Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation”, Water Research, 41 nº7 (2010): 2371-2379.
  • Dockhorn, T. “About the economy of phosphorus recovery”, International Conference on Nutrient Recovery from Wastewater Streams. Ashley, Mavinic and Koch (eds). (IWA Publishing, London, UK, 2009)
  • Shimamura, K., Tanaka, T., Miura, Y. y Ishikawa, H. “Development of high-efficiency phosphorus recovery method using a fluidized-bed crystallized phosphorus removal system”, Water Science and Technology, 48 nº1 (2003): 163-170.
  • de-Bashan, L.E. y Bashan, Y. “Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003)”, Water Research, 38 (2004): 4222-4246.
  • Elliott, H.A. y O´Connor, G.A. “Phosphorus management for sustainable biosolids recycing in the United States”, Soil Biology and Biochemistry, 39 nº6 (2007): 1318-1327.
  • Pastor, L. “Estudio de precipitación y recuperación del fósforo presente en las aguas residuales en forma de estruvita (MgNH4PO4 6H2O)”. Departamento de Ingeniería Hidraúlica y Medio Ambiente. Universidad Politécnica de Valencia. (2008).
  • Z.Long-Yen, S.H. Chen, S.M. Wang, L.F. Lin, Y.J. Yan, Z.J. Zhang y J.S. Chen. “Phosphorus recovery from synthetic swine wastewater by chemical precipitation using response surface methodology”, Journal of Hazardous Materials, 176 nº1-3 (2010): 1083-1088.
  • Paul, E., Laval, M.L. y Sperandio, M. “Excess sludge production and costs due to phosphorus removal”, Environmental Technology, 22 (2001): 1363-1372.
  • Jeanmaire, N. y Evans, T. “Technico-Economic Feasibility of P-recovery from municipal wastewaters”, Environmental Technology, 22 nº11 (2001): 1355-1361.
  • Berg, U., Knoll, G., Kaschka, E., Weidler, P.G. y Nüesch, R. “Is phosphorus recovery form waste water feasible?”, Environmental Technology, 28 (2006): 165-172.
  • Dockhorn, T. “Stoffstrommanagement und Ressourcenökonomie in der kommunalen” Abwasserwirtsschaft, TU Braunschweig 74, ISSN 0934-9731, (2007).
  • Schaum, C.A. “Verfahren für eine zukünftige KlärschlammbehandlungKlärschlammkonditionierung und Rückgewinnung von Phosphor aun Klärschlammasche”, Schriftenreihe WAR, TU Darmstadt 185, (2007).
  • U.S Geological Survey Home Page: http://minerals.usgs.gov/minerals/
  • Hernández, F., Urkiaga, A., De las Fuentes, L., Bis, B., Chiru, E., Balazs, B. y Wintgens, T. “Feasibility studies for water reuse projects: an economical approach”, Desalination, 187 (2006): 253-261.
  • Hernández-Sancho, F., Molinos-Senante, M. y Sala-Garrido, R. “Estudio de viabilidad económica para el tratamiento de aguas residuales a través de un análisis coste-beneficio”, Rect@,11 (2010): 1-25.
  • Färe, R., Grosskopf, S., Lovell, C.A, y Yaisawarng, S. “Derivation of shadow prices for undesirable outputs: a distance function approach”, Review of Economics and Statistics, 75 nº2 (1993): 374-380.
  • Färe, R. y Grosskopf, S. “Shadow pricing of good and bad commodities”, American Journal of Agricultural Economics, 80 (1998): 584-590.
  • Färe, R., Grosskopf, S. y Weber, W. “Shadow prices of Missouri public conservation land”, Public Finance Review, 29 nº6 (2001): 444-460.
  • Färe, R., Grosskopf, S. y Weber, W. “Shadow prices and pollution costs in U.S. agriculture”. Ecological economics, 56, (2006): 89-103.
  • Hernández, F., Molinos, M. y Sala, R. “Economic valuation of environmental benefits from wastewater treatment processes: An empirical approach for Spain”, Science of the Total Enviroment, 408 nº4 (2010): 953-957.
  • Molinos, M., Hernández, F. y Sala, R. “ Economic feasibility study for wastewater treatment: a cost-benefit analysis”, Science of the Total Enviroment, 408 nº20 (2010): 4396-4402.
  • Münch, E.V. y Barr, K. “Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams”, Water Research, 35 (2001): 151-159.
  • Van Dijk, J.C. y Braakensiek, H. “Phosphate removal by crystallization in a fluidized bed”, Water Science & Technology, 17 (1984): 133-142.
  • Taruya, T., Ueno, Y. y Fujii, M. “Development of phosphorus resource recycling process from sewage”. 1st World Water Congress of IWA, Paris, 03-06 July, 2000. Poster NP-046.
  • Ahmed, S.Y., Shiel, R.S. y Manning, D. “Use of Struvite, a Novel P Source Derived from Wastewater Treatment, in Wheat Cultivation”, 18th World Congress of Soil Science, (Philadelphia, Pennsylvania, USA, 9-15 July, 2006).
  • Ueno, Y. y Fujii, M. “Three years experience of operating and selling recovered struvite from full-scale plant”, Environmental Technology, 22 (2001): 1373-1381.
  • Köhler, J. “Phosphorus recycling: regulation and economic analysis”, In: Phosphorus in Environmental Technologies: Principles and Applications, ed. E. Valsami Jones, (IWA publishing, London, UK, (2004): 529-546).
  • Chambers, R.G. “Input and output indicators”, In: Färe, R., Grosskopf, S. and Russell, R. (Eds.), Index numbers: essays in honour of Sten Malmquist. Kluwer Academic Publishers, Boston, (1998).
  • Lind, B.B., Ban, Z. y Bydén, S. “Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite”, Bioresource Technology, 73 (2000): 169-174.
  • Maier, W., Weidelener, A., Krampe, J. y Rott, U. “Entwicklung eines Verfarens zur PhosphatRückgewinnung aus ausgefaultem Nasschlamm oder entwässertem Faulschlamm als gut Pflanzenverfügbares Magnesium-Ammonium-Phosphat (MAP)”, Schlussbericht des durch die Deutsche Bundesstiftung Umwelt (Osnabrück) geförderten Forschungsvorhabens AZ 21042, (2005).
  • Pinnekamp, J., Gethke, K. y Montag, D. “Stand der Forschung zur Phosphorrückgewinnung”, 38. Essener Tagung für Wasser-und Abfallwirtschaft, Aachen, 11.3.2005. Schriftenreihe Gewässerschutz-Wasser-Abwasser, Nr. 198, Aachen 2005.
  • Hernández, F. y Sala, R. “Technical efficiency and cost analysis in wastewater treatment processes: A DEA approach”, Desalination, 249 nº1 (2009): 230-234.
  • Montag, D., Gethke, K. y Pinnekamp, J. “Different strategies for recovering phosphorus: Technologies and costs”, International Conference on Nutrient Recovery from Wastewater Streams. Ashley, Mavinic and Koch (eds). (IWA Publishing, London, UK, 2009).
  • Bridger, G.L., Salutsky, M.L. and Starostka, R.W. “Metal ammonium phosphates as fertilizers”. Agricult. Food Chem., 10 (1962): 181-188.
  • Lunt, O.R., Kofranek, A.M. and Clark, S.B. “Availability of minerals from magnesium ammonium phosphates”. Agricult. Food Chem., 12 (1964):497-504.
  • Ha, N.V., Kant, S. y Maclaren, V.W. “Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam”, Ecological Economics, 65 nº3 (2008): 98-110.