Multiscale design of supermaterialsfrontier for high-performance engineering
- Ortún Palacios, Jaime
- Santiago Cuesta López Director
- Nicolás A. Cordero Tejedor Co-director
Defence university: Universidad de Burgos
Fecha de defensa: 25 June 2019
- Roberto Luis Iglesias Pastrana Chair
- Roberto Serrano López Secretary
- Luis Miguel Molina Martín Committee member
- Alfredo Bol Arreba Committee member
- Sergiu Arapan Committee member
Type: Thesis
Abstract
Currently, there is a lack of computational tools to predict the damage suffered by nanostructured materials as well as their performance under severe operating conditions such as those expected in the walls of reaction chambers in nuclear fusion or the shielding of space satellites. This thesis attempts to fill this gap by developing a framework of predictive modeling to optimize the design of materials that exhibit improved resistance to damage and exceptional mechanical properties for application in advanced engineering systems. As an innovative approach, a multiscale methodology is proposed to test nanostructured materials working within realistic environments which combines techniques like density functional theory (DFT), molecular dynamics (MD) and finite element method (FEM)