Identification of mechanical damage in the 'Fuji' apple cv. using artificial hyperspectral vision

  1. Oscar Leonardo García Navarrete 1
  2. Sergio Cubero García 2
  3. José Manuel Prats Montalbán 3
  1. 1 Facultad de Ingeniería, Universidad Nacional de Colombia, Bogotá, Colombia
  2. 2 Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias, Valencia, España
  3. 3 c Departamento de Estadística e Investigación Operativa Aplicadas y Calidad Universitat Politècnica de València
Journal:
DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín
  1. Gutiérrez Rodríguez, Betty Jazmín
  2. Argüello Tovar, José Orlando

ISSN: 0012-7353

Year of publication: 2019

Volume: 86

Issue: 210

Pages: 224-232

Type: Article

DOI: 10.15446/DYNA.V86N210.78605 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: DYNA: revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín

Sustainable development goals

Abstract

One problem in the post-harvest phase of apples is the mechanical impact damage. Its identification prevents quality issues during storage. The objective was to identify the wavelengths at which damage is detected early in apples of the 'Fuji' cultivar. Damage was simulated with a controlled stroke and taking hyperspectral images from 400 to 1700 nm. Three experiments were carried out at different temperatures (4 and 20 ° C) and with varying sampling times. It was found that the NIR zone ranging between 1050 and 1100 nm allows to classify healthy and bruised zones by means of a discriminant analysis by partial least squares (PLS-DA). Additionally, the evolution of the damage over time was not significant for the classification of the pixels (healthy and bruised classes), since bumps were detected in all three experiments from the first time

Bibliographic References

  • Cubero, S., N. Aleixos, F. Albert, A. Torregrosa, C. Ortiz, O. García-Navarrete, and J. Blasco, Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform, Precision Agriculture, 15(1), pp. 80–94, 2014, 10.1007/s11119-013-9324-7" target="_blank">http://doi:10.1007/s11119-013-9324-7.
  • García-Navarrete, O. L., Estudio de costes de la recolección de naranjas por vibrador de troncos mediante análisis de sensibilidad, MSc. Thesis, Departamento de Economía y Ciencias Sociales, Universitad Politecnica de Valencia, Valencia, España, 2011.
  • Del Río, M.A., Mazzuz, C.F., Gómez de Barreda, L. and Sendra Company, G., Evaluación de los impactos y la influencia de la línea de confección sobre la calidad de frutos de naranja "Lanelate". Todo CITRUS, España 11, pp. 5–16, 2000.
  • Stern-Freifeld, D., Desarrollo de métodos analíticos para la detección de cambios metabólicos frente a situaciones de estrés en fruta fresca, PhD. Thesis, Departamento de Tecnología de Alimentos, Universitad Politecnica de Valencia, Valencia, España, 2005.
  • Vélez-Rivera, N., J. Gómez-Sanchis, J. Chanona-Pérez, J. J. Carrasco, M. Millán-Giraldo, D. Lorente, S. Cubero, and J. Blasco, Early detection of mechanical damage in mango using NIR hyperspectral images and machine learning, Biosystems Engineering, 122, pp. 91–98, 2014, 10.1016/j.biosystemseng.2014.03.009" target="_blank">http://doi:10.1016/j.biosystemseng.2014.03.009.
  • Ruiz-Altisent, M., Reducción de daños mecánicos en la manipulación de frutas, Vida rural, [Online], Vol 113, pp. 68–70, 2000. [fecha de consulta 19 de mayo de 2017] Disponible en: http://oa.upm.es/16228/1/02_048.pdf
  • Cubero, S., N. Aleixos, E. Moltó, J. Gómez-Sanchis, and J. Blasco, Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables, Food and Bioprocess Technology, 4(4), pp. 487–504, 2011, 10.1007/s11947-010-0411-8" target="_blank">http://doi:10.1007/s11947-010-0411-8.
  • Lorente, D., N. Aleixos, J. Gómez-Sanchis, S. Cubero, O. L. García-Navarrete, and J. Blasco, Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment, Food and Bioprocess Technology, 5(4), pp. 1121–1142, 2012, 10.1007/s11947-011-0725-1" target="_blank">http://doi:10.1007/s11947-011-0725-1.
  • Aunio Aunion-Castello, F. M., Influencia de los Impactos Mecánicos en Manzanas (Granny Smith) sobre la Respiración y Otras Propiedades Físicas, Trabajo de fin de carrera, Escuela Técnica Superior de Ingenieros Agronómos, Universidad Politécnica de Valencia, Valencia, España, 2002.
  • Gómez Sanchis, J. Gómez-Sanchis, J., Detección automática de podredumbres en cítricos mediante procesado avanzado de imágenes hiperespectrales, PhD. Thesis, Departamento de Ingenieria Electronica,Universitad de Valencia, Valencia, España, 2010
  • Baranowski, P., W. Mazurek, J. Wozniak, and U. Majewska, Detection of early bruises in apples using hyperspectral data and thermal imaging, Journal of Food Engineering, 110(3), pp. 345–355, 2012, 10.1016/J.JFOODENG.2011.12.038" target="_blank">http://doi:10.1016/J.JFOODENG.2011.12.038.
  • Che, W., L. Sun, Q. Zhang, W. Tan, D. Ye, D. Zhang, and Y. Liu, Pixel based bruise region extraction of apple using Vis-NIR hyperspectral imaging, Computers and Electronics in Agriculture, 146, pp. 12–21, 2018, 10.1016/J.COMPAG.2018.01.013" target="_blank">http://doi:10.1016/J.COMPAG.2018.01.013.
  • ElMasry, G., N. Wang, C. Vigneault, J. Qiao, and A. ElSayed, Early detection of apple bruises on different background colors using hyperspectral imaging, LWT - Food Science and Technology, 41(2), pp. 337–345, 2008, 10.1016/J.LWT.2007.02.022" target="_blank">http://doi:10.1016/J.LWT.2007.02.022.
  • Zhu, Q., J. Guan, M. Huang, R. Lu, and F. Mendoza, Predicting bruise susceptibility of “Golden Delicious” apples using hyperspectral scattering technique, Postharvest Biology and Technology, 114, pp. 86–94, 2016, 10.1016/J.POSTHARVBIO.2015.12.007" target="_blank">http://doi:10.1016/J.POSTHARVBIO.2015.12.007.
  • Keresztes, J. C., M. Goodarzi, and W. Saeys, Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques, Food Control, 66, pp. 215–226, 2016, 10.1016/J.FOODCONT.2016.02.007" target="_blank">http://doi:10.1016/J.FOODCONT.2016.02.007.
  • Huang, W., J. Li, Q. Wang, and L. Chen, Development of a multispectral imaging system for online detection of bruises on apples, Journal of Food Engineering, 146, pp. 62–71, 2015, 10.1016/J.JFOODENG.2014.09.002" target="_blank">http://doi:10.1016/J.JFOODENG.2014.09.002.
  • Tan, W., L. Sun, F. Yang, W. Che, D. Ye, D. Zhang, and B. Zou, Study on bruising degree classification of apples using hyperspectral imaging and GS-SVM, Optik, 154, pp. 581–592, 2018, 10.1016/J.IJLEO.2017.10.090" target="_blank">http://doi:10.1016/J.IJLEO.2017.10.090.
  • Xing, J. and J. De Baerdemaeker, Bruise detection on “Jonagold” apples using hyperspectral imaging, Postharvest Biology and Technology, 37(2), pp. 152–162, 2005, 10.1016/J.POSTHARVBIO.2005.02.015" target="_blank">http://doi:10.1016/J.POSTHARVBIO.2005.02.015.
  • ElMasry, G., N. Wang, and C. Vigneault, Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks, Postharvest Biology and Technology, 52(1), pp. 1–8, 2009, 10.1016/J.POSTHARVBIO.2008.11.008" target="_blank">http://doi:10.1016/J.POSTHARVBIO.2008.11.008.
  • Baranowski, P., W. Mazurek, and J. Pastuszka-Woźniak, Supervised classification of bruised apples with respect to the time after bruising on the basis of hyperspectral imaging data, Postharvest Biology and Technology, 86, pp. 249–258, 2013, 10.1016/J.POSTHARVBIO.2013.07.005" target="_blank">http://doi:10.1016/J.POSTHARVBIO.2013.07.005.
  • Xing, J., W. Saeys, and J. De Baerdemaeker, Combination of chemometric tools and image processing for bruise detection on apples, Computers and Electronics in Agriculture, 56(1), pp. 1–13, 2007, 10.1016/J.COMPAG.2006.12.002" target="_blank">http://doi:10.1016/J.COMPAG.2006.12.002.
  • Keresztes, J. C., E. Diels, M. Goodarzi, N. Nguyen-Do-Trong, P. Goos, B. Nicolai, and W. Saeys, Glare based apple sorting and iterative algorithm for bruise region detection using shortwave infrared hyperspectral imaging, Postharvest Biology and Technology, 130, pp. 103–115, 2017, 10.1016/J.POSTHARVBIO.2017.04.005" target="_blank">http://doi:10.1016/J.POSTHARVBIO.2017.04.005.