Analysis of the potential of si lean combustion and cai combustion in a two-stroke spark-assisted gasoline engine

  1. Valero Marco, Jorge
Dirigida por:
  1. José Javier López Director/a

Universidad de defensa: Universitat Politècnica de València

Fecha de defensa: 06 de febrero de 2020

Tribunal:
  1. Héctor Climent Puchades Presidente/a
  2. Francisco V. Tinaut Fluixá Secretario
  3. Hua Zhao Vocal

Tipo: Tesis

Resumen

Internal combustion engines are in a situation in which they must be cleaner and more efficient than they have ever been. This change is motivated by the global and continuous evolution of the emissions regulations linked to their commercialization, which try to establish the path to protect the human health, and move towards more sustainable energetic models. Framed in this context, the research work developed in this PhD thesis has focused on the way to continue improving the spark ignition engines. To this end, a prototype two-stroke engine has been used, with the idea of studying the Spark Ignited combustion in lean conditions ('lean SI') and the Controlled Auto-Ignition combustion 'CAI'). In this way, the traditional 'SI' operation in stoichiometric conditions of this type of engines is replaced, looking for an improvement in fuel efficiency, and a reduction, at the same time, of the pollutant emissions. This work has been approached mainly from an experimental point of view. Firstly, different works have been performed on the engine: operation of the different combustion modes, definition of the operating strategies, and compilation of experimental data coming from the engine operation in the different regions of the engine map. And, secondly, all this data has been analyzed and studied in detail to define the strengths and weaknesses of each combustion mode applied to the different engine operating conditions. The combination of these two works has led to obtain a large amount of data about the achievable efficiencies and the emissions values obtained in each combustion mode. And, in addition, the influence on the combustion of the burned gases recirculation in the engine ('EGR'), has also been studied as a strategy to reduce emissions, and control the combustion at high loads in both combustion modes. Regarding the analytical part of the work, several problems have been detected. Firstly, the high combustion variability in this engine, and secondly, the coupling of two completely different combustion modes. These issues have generated the need to analyze the data obtained in a more detailed way, in order to get more information about the combustion process. To solve these two aspects, first, a different point of view has been raised when dealing with the combustion diagnosis, the cycle to cycle analysis, and secondly, a combustion analysis methodology has been proposed in order to allow the combustion analysis from a more detailed point of view. In this way the combustion development is studied, and thus, the differentiation between the different combustion events that take place in the engine can be studied. All this work has been useful to define the strategies to operate the whole engine map by combining the 'lean SI' and 'CAI' combustion modes. This solution, compared to the current Euro VI engines, has presented higher efficiency values complying with the established emissions limits, showing in this way, the high potential of these combustion modes applied to 'SI' engines, as well as a real possibility of its implementation in future vehicles.