Álgebras de campos vectoriales asociadas a singularidades. Determinación finita
- Javier Finat Codes Director
Universidade de defensa: Universidad de Valladolid
Ano de defensa: 1998
- José Manuel Aroca Hernández-Ros Presidente
- Antonio Campillo López Secretario
- José Luis Vicente Córdoba Vogal
- Alberto Pérez de Vargas Luque Vogal
- Francisco Jesús Castro Jiménez Vogal
Tipo: Tese
Resumo
Se trata el problema general de clasificación de gérmenes de aplicaciones, el análisis de conceptos como la determinación finita, rangos de determinación y las deformaciones de singularidades, Las aportaciones se resumen en dos bloques: 1. Se desarrolla una técnica algebraica basada en el estudio de K-álgebras asociadas a singularidades: se estudian y se proporcionan propiedades de los módulos de derivaciones de álgebras cocientes, con especial atención a las K-álgebras analíticas, se establece la relación con álgebras de Lie de campos vectoriales asociadas a singularidades de gérmenes de funciones mediante una representación y se completa este estudio y los resultados con numerosos ejemplos donde se muestran propiedades relevantes de este tipo de álgebras. 2. Se realiza un estudio detallado de la propiedad de determinación finita, sus extensiones y los rangos de determinación. La introducción del concepto de "álgebras tangentes" permite, junto a la consideración de otros conceptos ya conocidos (acciones de grupos unipotentes, etc), obtener una batería de nuevos resultados de determinación. Se exploran las propiedades de los rangos de determinación tangentes obtenidos, la sistematización de su generación así como su buena adaptación computacional.