Eficiencia isoterma de los modelos de ventilación exterior en patios de edificios residenciales. Estudio de casos

  1. M. A. Padilla-Marcos 1
  2. J. Feijó-Muñoz 1
  3. A. Meiss 1
  1. 1 Universidad de Valladolid, España
Journal:
Informes de la construcción

ISSN: 0020-0883

Year of publication: 2015

Volume: 67

Issue: 540

Type: Article

DOI: 10.3989/IC.15.029 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Informes de la construcción

Abstract

Many buildings have been designed and built with courtyards to supply the light and healthy air demands to the dwellings. However, confined air quality in many of them is unhealthy for human use due to the diminished ability to renew the air. The purpose of the study is to catalog different models of isolated building courtyards under isothermal conditions, according to their dimensions. The goal is to quantify the efficiency of air exchange in each model and analyze the influence of size in controlled external conditions. In addition, current regulations in Spain are compared with the obtained results. In conclusion, the efficiency of ventilation ratio for courtyards in buildings depends on its design.

Bibliographic References

  • (1) Skote, M., Sandberg, M., Westerberg, U., Claesson, L., Johansson, A.V. (2005). Numerical and experimental studies of wind environment in an urban morphology. Atmospheric Environment, 39: 6147-6158. http://dx.doi.org/10.1016/j.atmosenv.2005.06.052
  • (2) Walker, R.R., Shao, L., Woolliscroft, M. (1993, 21-23 de septiembre). Natural ventilation via courtyards: Theory & measurements. En 14th AIVC Conference "Energy Impact of Ventilation and Air Infiltration". Copenhague.
  • (3) Padilla-Marcos, M.A., Feijó-Mu-oz, J., Meiss, A. (2015). Wind velocity effects on the quality and efficiency of ventilation in the modelling of outdoor spaces. Case studies. Building Services Engineering Research and Technology, (Published on line first).
  • (4) Zaki, S.A., Hagishima, A., Tanimoto, J. (2012). Experimental study of wind-induced ventilation in urban building of cube arrays with various layouts. Journal of Wind Engineering and Industrial Aerodynamics, 103: 31-40. http://dx.doi.org/10.1016/j.jweia.2012.02.008
  • (5) Kim, J.J., Baik, J.J. (2004). A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k–? turbulence model. Atmospheric Environment, 38(19): 3039-3048. http://dx.doi.org/10.1016/j.atmosenv.2004.02.047
  • (6) Sandberg, M. (1981). What is ventilation efficiency? Building and Environment, 16(2): 123-135. http://dx.doi.org/10.1016/0360-1323(81)90028-7
  • (7) Aldawoud, A. (2013). The influence of the atrium geometry on the building energy performance. Energy and Buildings, 57: 1-5. http://dx.doi.org/10.1016/j.enbuild.2012.10.038
  • (8) Buccolieri, R., Sandberg, M., di Sabatino, S. (2011). An application of ventilation efficiency concepts to the analysis of building density effects on urban flow and pollutant concentration. International Journal of Environment and Pollution, 47: 248-256. http://dx.doi.org/10.1504/IJEP.2011.047339
  • (9) Shao, L., Walker, R.R., Woolliscroft, M. (1993, 21-23 de septiembre). Natural ventilation via courtyards: The application of CFD. En 14th AIVC Conference "Energy Impact of Ventilation and Air Infiltration". Copenhague.
  • (10) Padilla-Marcos, M.A., Feijó-Mu-oz, J., Meiss, A. (2016). Confined-air quality based on the geometric efficiency of urban outdoor spaces. Cases study. (Artículo de tesis doctoral en prensa). International Journal of Ventilation, 15.
  • (11) Ministerio de Vivienda. (2006). Real Decreto 314/2006 de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación. Boletín Oficial del Estado, nº74. España.
  • (12) Ministerio de la Vivienda. (1969). Orden de 20 de mayo por la que se aprueban las Ordenanzas Provisionales de Viviendas de Protección Oficial. Boletín Oficial del Estado, nº123. España.
  • (13) Ayuntamiento de Madrid. (1997). Normas Urbanísticas del PGOUM. Boletín Oficial de la Comunidad de Madrid, nº92. España.
  • (14) Departamento de Territorio y sostenibilidad. Gobierno de Cataluña. (2012). Decreto 141/2012, de 30 de octubre, por el que se regulan las condiciones mínimas de habitabilidad de las viviendas y la cédula de habitabilidad. Diario Oficial de la Generalitat de Cataluña, nº6245. España.
  • (15) Ayuntamiento de Barcelona. (1976). Normas Urbanísticas del Plan General Metropolitano de Barcelona. Boletín Oficial de la Provincia de Barcelona del 19/07/1976. España.
  • (16) Consejería de Vivienda y Ordenación del Territorio. Junta de Andalucía. (2008). Orden de 21 de julio de 2008, sobre normativa técnica de dise-o y calidad aplicable a las viviendas protegidas en la Comunidad Autónoma de Andalucía y se agilizan los procedimientos establecidos para otorgar las Calificaciones de Vivienda Protegidas. Boletín Oficial de la junta de Andalucía, nº154. España.
  • (17) Ayuntamiento de Sevilla. (2006). Normas Urbanísticas del Plan General de Ordenación Urbana de Sevilla. Boletín Oficial de la Junta de Andalucía, nº21. España.
  • (18) Consejería de Vivienda y Asuntos Sociales. Gobierno Vasco. (2009). Orden de 12 de febrero de 2009, por la que se aprueban las Ordenanzas de Dise-o de Viviendas de Protección Oficial. Boletín Oficial del País Vasco, nº43. España
  • (19) Ayuntamiento de Bilbao. (1995). Plan General de Ordenación Urbana de Bilbao. Boletín Oficial de Bilbao, nº124. España.
  • (20) Ayuntamiento de Valladolid. (2004). Plan General de Ordenación Urbana de Valladolid. Boletín Oficial de la Provincia, nº48. España.
  • (21) Hang, J., Sandberg, M., Li, Y. (2009). Age of air and air exchange efficiency in idealized city models. Building and Environment, 44(8): 1714-1723. http://dx.doi.org/10.1016/j.buildenv.2008.11.013
  • (22) Vardoulakis, S., Fisher, B.E.A., Pericleous, K., Gonzalez-Flesca, N. (2003). Modelling air quality in street canyons: a review. Atmospheric Environment, 37(2): 155-182. http://dx.doi.org/10.1016/S1352-2310(02)00857-9
  • (23) Jongen, T. (2004). Extension of the Age-of-Fluid Method to Unsteady and Closed-Flow Systems. American Institute of Chemical Engineers (AIChE), 50(9): 2020-2037. http://dx.doi.org/10.1002/aic.10193
  • (24) Hertwig, D., Efthimiou, G.C., Bartzis, J.G., Leitl, B. (2012). CFD-RANS model validation of turbulent flow in a semiidealized urban canopy. Journal of Wind Engineering and Industrial Aerodynamics, 111: 61-72. http://dx.doi.org/10.1016/j.jweia.2012.09.003
  • (25) Schatzmann, M., Rafailidis, S., Pavageau, M. (1997). Some remarks on the validation of small-scale dispersion models with field and laboratory data. Journal of Wind Engineering and Industrial Aerodynamics, 67-68: 885-893. http://dx.doi.org/10.1016/S0167-6105(97)00126-8
  • (26) Cook, N.J. (1978). Determination of the model scale factor in wind-tunnel simulations of the adiabatic atmospheric boundary layer. Journal of Industrial Aerodynamics, 2(4): 311-321. http://dx.doi.org/10.1016/0167-6105(78)90016-8
  • (27) Richards, P.J., Hoxey, R.P. (1993). Appropriate boundary conditions for computational wind engineering models using the k-? turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 46-47: 145-153. http://dx.doi.org/10.1016/0167-6105(93)90124-7
  • (28) Wang, Z.Y., Plate, E.J., Rau, M., Keiser, R. (1996). Scale effects in wind tunnel modelling. Journal of Wind Engineering and Industrial Aerodynamics, 61(2-3): 113-130. http://dx.doi.org/10.1016/0167-6105(96)00049-9
  • (29) Murakami, S., Hayashi, Y. (1988). 3-D numerical simulation of airflow around a cubic model by means of the k-e model. Journal of Wind Engineering and Industrial Aerodynamics, 31(2-3): 283-303. http://dx.doi.org/10.1016/0167-6105(88)90009-8
  • (30) Yakhot, V., Orszag, S.A. (1986). Renormalization Group Analysis of Turbulence. Basic Theory. Journal of Scientific Computing, 1(1): 3-51. http://dx.doi.org/10.1007/BF01061452
  • (31) Shih, T.H. Liou, W.W., Shabbir, A., Yang, Z., Zhu, J. (1995). A New k-? Eddy Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation. Computers & Fluids, 24(3): 227-238. http://dx.doi.org/10.1016/0045-7930(94)00032-T
  • (32) Li, J., Ward, I.C. (2007). Developing Computational Fluid Dynamics conditions for urban natural ventilation study. En Proceedings: Building Simulation.
  • (33) Gastón, M., Pascal, E., Frías, L., Martí, I., Irigoyen, U., Cantero, E., Lozano, S., Loureiro, Y. Wind resources map of Spain at mesoscale. Methodology and validation. Sarriguren, Navarra: Centro Nacional de Energías Renovables (CENER).
  • (34) Sutton, O.G. (1936). The Logarithmic Law of wind Structure near the Ground. Quarterly journal of the Royal Meteorological Society, 63(268): 105-107. http://dx.doi.org/10.1002/qj.49706326820
  • (35) Launder, B.E., Spalding, D.B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2): 269-289. http://dx.doi.org/10.1016/0045-7825(74)90029-2
  • (36) Hang, J., Sandberg, M., Li, Y. (2009). Effect of urban morphology on wind condition in idealized city models. Atmospheric Environment, 43(4): 869-878 http://dx.doi.org/10.1016/j.atmosenv.2008.10.040