Temporal evolution of litterfall and potential bio-element return in a successional forest sequence of the Espinal Ecoregion, Argentina

  1. Mendoza, Carlos A.
  2. Gallardo Lancho, Juan F.
  3. Aceñolaza, Pablo G.
  4. Turrion, Maria-Belen
  5. Pando, Valentin
Revista:
Forest systems

ISSN: 2171-5068

Año de publicación: 2014

Volumen: 23

Número: 3

Páginas: 411-424

Tipo: Artículo

DOI: 10.5424/FS/2014233-05007 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Forest systems

Resumen

Aim of study: The aim of this work was to assess the litterfall contribution and the return of bioelements of a successional forest sequence from the Mesopotamian Espinal (Argentina) which was associated with livestock production.Area of study: Mesopotamian Espinal, Argentina.Material and methods: Litterfall samples were taken and a chemical characterization of their fractions was determined in three stages: a) in the initial successional stage (IF); b) in an intermediate secondary forest (SF); and c) in a mature forest (MF).Main results: The litterfall contribution of the three forests was 1140 ±98, 2947 ±154, and 2911 ±57 kg DM ha-1 yr-1; respectively. The IF showed a seasonal pattern of contribution with a peak occurring during summer (528 ±85 kg DM ha-1 yr-1), then decreasing during autumn, winter, and spring (241 ±30, 165 ±27, and 207 ±29 kg DM ha-1 season-1,respectively). The SF showed a rather constant seasonal pattern (about 750 kg DM season-1). The MF showed significant differences among seasons, the maximum and minimum contributions ranging between 846 ±29 and 598 ±33 kg DM ha-1 season-1 in summer and spring, respectively. The litterfall leaves/branch ratio decreased as ecological succession advanced, being lower as the forest gets more mature. As a consequence, this ratio can be used as an indicator of maturity in the sequence. The potential return of bio-elements of the successional forest sequence was proportional to the litterfall input, with a maximum amount of N in the Fabaceae species. Research highlights: The litterfall assessment and the leaves/branch ratio allowed the characterization of the successional stages in Xerophytic forest used for livestock production. Keywords: Semi-xerophytic trees; tree production pattern; plant organ contribution; leaf/branch ratio; return of bio-elements; tree nutrients.

Referencias bibliográficas

  • Aceñolaza FG, 2007. Geología y recursos geológicos de la Mesopotamia Argentina. Serie de Correlación Geológica 22: 160 pp.
  • Aceñolaza PG, 2000. Variabilidad estructural de una comunidad forestal sobre suelos vérticos de la provincia de Entre Ríos. Rev Fac Agron 20: 123 - 130.
  • Aceñolaza PG, Zamboni LP and Gallardo JF, 2006. Ciclos biogeoquímicos de bosques de la llanura de inundación del río Paraná (Argentina): Aporte de hojarasca. In: Medioambiente en Iberoamérica. Visión desde la Física y la Química en los albores del siglo XXI, J.F. Gallardo Lancho (ed.) Badajoz (Espa-a). Sociedad Iberoamericana de Física y Química Ambiental vol. 2: 529-536.
  • Aceñolaza PG, Zamboni LP and Gallardo JF, 2009. Aporte de hojarasca en bosques del predelta del río Paraná (Argentina). Bosque 30: 135-145.
  • Aceñolaza PG, Zamboni LP, Rodríguez EE and Gallardo JF, 2010. Litterfall production in forests located at the Pre-delta area of the Paraná River (Argentina).Ann For Sci 67: 311-320. http://dx.doi.org/10.1051/forest/2009117
  • Arturi M, 2006. Situación ambiental en la ecorregión Espinal. In: A. Brown, U. Martínez Ortiz, M. Acerbi and J. Corcuera (eds.). La situación ambiental argentina 2005. Buenos Aires. Fundación Vida Silvestre Argentina. pp: 241-246.
  • Bartlett MS, 1937. Properties of sufficiency and statistical tests. Proc Royal Soc London, Series A 160 (901): 268-282. http://dx.doi.org/10.1098/rspa.1937.0109
  • Bray JR, Gorham E, 1964. Litter production in forest of the world. Advances Ecol Res 2: 101157. http://dx.doi.org/10.1016/S0065-2504(08)60331-1
  • Brinson MM, Bradshaw HD, Holmes R and Elkins J, 1980. Litterfall, stemflow, and throughfall nutrient fluxes in an alluvial swamp forest. Ecology 61: 827-835. http://dx.doi.org/10.2307/1936753
  • Burkart R, Bárbaro N, Sánchez O and Gómez D, 1999. Eco-regiones de la argentina. Administración de Parques Nacionales. PRODIA, Buenos Aires. 43 pp.
  • Cabrera AL, 1994. Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería (1). Ed. ACME, Buenos Aires. 85 pp.
  • Carnevale N, Lewis JP, 2001. Litterfall and organic matter decomposition in a seasonal forest of the eastern Chaco (Argentina). Rev Biol Trop 49: 203-212.
  • Chapman HD, Prat PF, 1979. Métodos de análisis para suelos, plantas y aguas. Ed. Trillas. México, 195 pp.
  • De Petre A, Stephan S, 1998. Características pedológicas y agronómicas de los Vertisoles de Entre Ríos. Argentina. Facultad de Ciencias Agropecuarias Universidad Nacional de Entre Ríos (Argentina). 65 pp.
  • Drake JE, Raetz LM, Davis SC and DeLucia EH, 2010. Hydraulic limitation not declining nitrogen availability causes the age-related photosynthetic decline in loblolly pine (Pinus taeda L.). Plant, Cell and Environ 33: 10, 1756-1766. http://dx.doi.org/10.1111/j.1365-3040.2010.02180.x
  • Duran SM, Kattan GH, 2005. A test of the utility of exotic tree plantations for understory birds and food resources in the Colombian Andes. Biotropica 37: 129–135. http://dx.doi.org/10.1111/j.1744-7429.2005.03207.x
  • Fernández Honaine M, Zucol AF and Osterriedth M, 2005. Biomineralizaciones de sílice en Celtis tala (Celtidaceae). Boletín SAB 40 (3-4): 229-239.
  • Gallardo JF, Santa Regina I and San Miguel C, 1989. Ciclos biogeoquímicos en bosques de la Sierra de Bejar (Salamanca, España). 1. Producción de hojarasca. Rev Ecol Biol Sol 26: 35-46.
  • Gauch HG, 1982. Multivariate analysis in community ecology. Cambridge Univ. Press, Londres. 298 pp. http://dx.doi.org/10.1017/CBO9780511623332
  • Haase R, 1999. Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For Ecol and Manage 117: 129-147.
  • Harvey CA, González J and Villalobos M, 2007. Agroforestry systems conserve species-rich but modified assemblages of tropical birds and bats. Biodivers Conserv 16: 2257–2292. http://dx.doi.org/10.1007/s10531-007-9194-2
  • INTA, 1990. Carta de Suelos de la República Argentina, Departamento La Paz (Entre Ríos). I.N.T.A., Subsecretaría de Asuntos Agrarios de Entre Ríos, Paraná (Argentina). 150 pp.
  • INTA, 2000. Carta de suelos de la República Argentina. Plan Mapa de Suelos de la Provincia de Entre Ríos, Departamento Villaguay. Subsecretaría de Asuntos Agrarios de Entre Ríos, Paraná (Argentina). 130 pp.
  • Jeffrey A, Jennifer J, Jenkins C, Dennis S and Ducey O, 2007. Spatial patterns of forest characteristics in the western United States derived from inventories. Ecol Appl 17: 2387-2402. http://dx.doi.org/10.1890/06-1951.1
  • Lewis JP, Prado DE and Barberis IM, 2006. Los remanentes de bosques del Espinal en la provincia de Córdoba. In: Situación Ambiental Argentina 2005, A.D. Brown and J. Corcuera (eds.). Editorial Fundación Vida Silvestre Argentina. Buenos Aires. pp. 254-260.
  • Maldonado FD, Sione W and Aceñolaza PG, 2012. Mapeo de desmontes en áreas de bosque nativo de la Provincia de Entre Rios. Ambiência 8 NS: 523-532.
  • Martín A, Santa Regina I and Gallardo JF, 1993. Ciclos biogeoquímicos en un bosque perenne de encina (Quercus rotundifolia) en las proximidades de Salamanca (Espa-a): Retorno potencial. In: Biogeoquímica de ecosistemas, J.F. Gallardo (ed.) Junta de Castilla y León, Valladolid (España). Pp. 151-160.
  • Martín A, Gallardo JF and Santa Regina I, 1996. Aboveground litter production and bioelement potential return in an evergreen oak (Quercus rotundifolia) woodland near Salamanca (Spain). Ann Sc For 53: 811-818. http://dx.doi.org/10.1051/forest:19960402
  • McCulloch CE, Searle SR, 2001. Genearalized, linear and mixed models. 4ª. ed. Wiley-Interscience, Nueva York, USA. 382 pp.
  • Mendoza C, Gallardo JF, Ace-olaza PG, Turrión MB and Pando V, 2012. Producción de hojarasca de bosques pertenecientes a una secuencia sucesional del Espinal Mesopotámico (R. Argentina). In: Gallardo J.F. (Coord.), "Aguas, suelos y vegetación en cuencas iberoamericanas", SiFyQA, Salamanca. pp.: 177-196.
  • Muñoz J de D, Milera S, Romero C and Brizuela A, 2005. Bosques Nativos y Selvas Ribere-as en la Provincia de Entre Ríos. In: Temas de la Biodiversidad del Litoral fluvial argentino. INSUGEO, Ser Miscelánea 14: 169-182.
  • Patrício M do S, Nunes L. and Pereira E, 2012. Litterfall and litter decomposition in chestnut high forest stands in northern Portugal. Forest Systems 21(2): 259-271. http://dx.doi.org/10.5424/fs/2012212-02711
  • Piao S, Fang J, Zhou L, Ciais P and Zhu B, 2006. Variations in satellite derived phenology in China's temperate vegetation. Global Change Biol, 12: 672-685. http://dx.doi.org/10.1111/j.1365-2486.2006.01123.x
  • Ramírez JA, Zapata CM, León JD and González MI, 2007. Caída de hojarasca y retorno de nutrientes en bosques montanos andinos de Piedras Blancas, Antioquia, Colombia. Interciencia 32: 303-311.
  • Santa Regina I, Gallardo JF, Rico M, Martín A, Gallego HA, Moreno G and Cuadrado S, 1991. Datos preliminares sobre biomasa aérea, producción y características edafoclimáticas de ecosistemas forestales de Quercus pyrenaica (Sierra de Gata, Salamanca, Spain). Stvdia Oecol 8: 147-158.
  • Santa Regina I, Rapp M, Martín A and Gallardo JF, 1997. Nutrient release dynamics in decomposing leaf to litter in two Mediterranean deciduous oak species. Ann For Sci 54: 747-760. http://dx.doi.org/10.1051/forest:19970805
  • Vogel HLM, Schumacher MV and Trüby P, 2012. Leaves deposition and nutrients of tree species in a native forest in southern Brazil. Floresta 42: 129-136. http://dx.doi.org/10.5380/rf.v42i1.26309
  • Zamboni P, Aceñolaza PG, 2004. Aporte al conocimiento de ciclos de materia orgánica en formaciones boscosas de la llanura de inundación del río Paraná. INSUGEO, Serie Misc 12: 5-12.