Apoyo a la toma de decisión en una red de evaporadores industriales

  1. Kalliski, Marc
  2. Pitarch, José Luis
  3. Jasch, Christian
  4. de Prada, César
Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2019

Volume: 16

Issue: 1

Pages: 26-35

Type: Article

DOI: 10.4995/RIAI.2018.9233 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Sustainable development goals

Abstract

Production and maintenance scheduling within an equipment network is a task whose complexity increases exponentially with the number of products, equipment and tasks. Finding optimal solutions (economic or resource efficient) becomes especially difficult for a human scheduler, even more when taking decisions in short time periods is required. This work addresses the problem of load allocation in real time and cleaning scheduling in a network of industrial evaporators via decision-support tools based on mixed-integer optimization with plant models. The proposed tools take into account the operators’ visualization preferences and they are integrated with the plant supervision system. Apart from providing recommendations for the optimal operation of the network, a semi-automatic model updating system based on historical  operation data is included.

Funding information

Funders

Bibliographic References

  • Başar, T., Bernhard, P., 2008. H∞-optimal control and related minimax design problems: A dynamic game approach. Springer, Boston. https://doi.org/10.1007/978-0-8176-4757-5
  • Bandler, J.W., Charalambous, C., 1974. Nonlinear programming using minimax techniques. Journal of Optimization Theory and Applications, 13 (6), 607-619. https://doi.org/10.1007/BF00933620
  • Bizet, V.M., Grossmann, I.E., Juhasz, N.M., 2005. Optimal production and scheduling of a process with decaying catalyst. AIChE Journal, 51 (3), 909-921. https://doi.org/10.1002/aic.10342
  • Bliek, C., Bonami, P., Lodi, A., 2014. Solving mixed integer quadratic programming problems with IBM-CPLEX: a progress report. Proceedings of the 26th RAMP Symposium, 171-180.
  • Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A., 2008. An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 5(2), 186-204. https://doi.org/10.1016/j.disopt.2006.10.011
  • Burton, D.M., 1976. Elementary Number Theory. Allyn & Bacon, Boston.
  • Charnes, A., Cooper, W.W., 1959. Chance-constrained programming. Management Science, 6 (1), 73-79. https://doi.org/10.1287/mnsc.6.1.73
  • Engell, S., Harjunkoski, I., 2012. Optimal operation: Scheduling, advanced control and their integration. Computers & Chemical Engineering, 47, 121-133. https://doi.org/10.1016/j.compchemeng.2012.06.039
  • Heluane, H., Blanco, A.M., Hernández, M.R., Bandoni, J.A., 2012. Simultaneous re-design and scheduling of multiple effect evaporator systems. Computers & Operations Research, 39 (5), 1173-1186. https://doi.org/10.1016/j.cor.2011.06.015
  • Kalliski, M., Krahé, D., Beisheim, B., Krämer, S., Engell, S., 2015. Resource efficiency indicators for real-time monitoring and optimization of integrated chemical production plants. Computer Aided Chemical Engineering, 37, 1949-1954. https://doi.org/10.1016/B978-0-444-63576-1.50019-4
  • Krämer, S., Engell, S. (Eds.), 2017. Resource Efficiency of Processing Plants: Monitoring and Improvement. Wiley-VCH Verlag.
  • Kujanpää, M., Hakala, J., Pajula, T., Beisheim, B., Krämer, S., Ackerschott, D., Kalliski, M., Engell, S., Enste, U., Pitarch, J.L., 2017. Successful Resource Efficiency Indicators for process industries. VTT Technology, 290, Helsinki.
  • LeiKon, 2014. D4.1 Requirement specification for the integrated deployment platform, Outcomes of the MORE Project. http://www.more-nmp.eu/outcomes/deliverables/
  • Mason, A.J., 2012. OpenSolver – An open source add-in to solve linear and integer programmes in Excel. En: Klatte, D., Lathi, H., Schmedders, K. (Eds.), Operations Research Proceedings 2011. Springer-Verlag, Berlin Heidelberg, 401-406. https://doi.org/10.1007/978-3-642-29210-1_64
  • Melouk, S.H., Freeman, N.K., Miller, D., Dunning, M., 2013. Simulation optimization-based decision support tool for steel manufacturing. International Journal of Production Economics, 141 (1), 269-276. https://doi.org/10.1016/j.ijpe.2012.08.001
  • Pereira, M.V.F., Pinto, L.M.V.G., 1991. Multi-stage stochastic optimization applied to energy planning. Mathematical Programming, 52, 359-375. https://doi.org/10.1007/BF01582895
  • Pitarch, J.L., Palacín, C.G., Merino, A., de Prada, C., 2017. Optimal operation of an evaporation process. En: Bock, H.G., Phu, H.X., Rannacher, R., Schlöder, J. (Eds.), Modeling, Simulation and Optimization of Complex Processes HPSC 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-67168-0_16
  • Rockafellar, R.T., Wets, R. J.-B., 1991. Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research, 16 (1), 119-147. https://doi.org/10.1287/moor.16.1.119
  • Sala, A., Pitarch, J.L., 2016. Optimisation of transient and ultimate inescapable sets with polynomial boundaries for nonlinear systems. Automatica, 73, 82-87. https://doi.org/10.1016/j.automatica.2016.06.017
  • Schulz, E.P., Bandoni, J.A., Diaz, M.S., 2006. Optimal shutdown policy for maintenance of cracking furnaces in ethylene plants. Industrial & Engineering Chemistry Research, 45 (8), 2748-2757. https://doi.org/10.1021/ie050341r
  • Tremblay, G., Berriah, S., Veillette, M., 2009. Method and system for electrolyzer diagnosis based on curve fitting analysis and efficiency optimization. U.S. Patent No. 7,616,006, Washington DC.