Modelling approaches for mixed forests dynamics prognosis. Research gaps and opportunities

  1. Bravo, Felipe 1
  2. Fabrika, Marek 2
  3. Ammer, Christian 3
  4. Barreiro, Susana 4
  5. Bielak, Kamil 5
  6. Coll, Lluis 6
  7. Fonseca, Teresa 7
  8. Kangur, Ahto 8
  9. Löf, Magnus 9
  10. Merganičová, Katarina 10
  11. Pach, Maciej 11
  12. Pretzsch, Hans 12
  13. Stojanović, Dejan 13
  14. Schuler, Laura 14
  15. Peric, Sanja 15
  16. Rötzer, Thomas 12
  17. del Río, Miren 16
  18. Dodan, Martina 15
  19. Bravo-Oviedo, Andrés 17
  1. 1 Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR) Universidad de Valladolid & INIA. Departamento de Producción Vegetal y Recursos Forestales, E.T.S. Ingenierías Agrarias Universidad de Valladolid Campus de Palencia Spain
  2. 2 Department of Forest Management and Geodesy, Faculty of Forestry, Technical University in Zvolen.
  3. 3 Abteilung Waldbau und Waldökologie der gemäßigten Zonen, Georg-August-Universität Göttingen, Göttingen.
  4. 4 Forest Research Center, School of Agriculture, University of Lisbon, Lisbon. Forest Ecology and Forest Management Group, Wageningen University and Research; Droevendaalsesteeg 3a, 6708PB Wageningen, The Netherlands.
  5. 5 Department of Silviculture, Warsaw University of Life Sciences.
  6. 6 Departament d’Enginyeria Agroforestal, E.T.S.E.A., Universitat de Lleida - Centre de Ciència i Tecnologia Forestal de Catalunya (CTFC), Solsona.
  7. 7 Forest Research Center, School of Agriculture, University of Lisbon, Lisbon. Universidade de Trás-os-Montes e Alto Douro, Department of Forest Sciences and Landscape Arquitecture, Vila Real.
  8. 8 Estonian University of Life Sciences, Department of Forest Management, Tartu.
  9. 9 Inst för sydsvensk skogsvetenskap - SLU , Alnarp.
  10. 10 Czech University of Life Sciences, Prague, Faculty of Forestry and Wood Sciences, Praha, Suchdol.
  11. 11 Department of Silviculture, Institute of Forest Ecology and Silviculture, University of Agriculture, Krakow.
  12. 12 Chair for Forest Growth and Yield Science, Technische Universität München.
  13. 13 Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad.
  14. 14 Institute of Terrestrial Ecosystems, ETH Zurich.
  15. 15 Croatian Forest Research Institute, Jastrebarsko.
  16. 16 Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR) Universidad de Valladolid & INIA. INIA. Forest Research Centre INIA-CIFOR, Madrid.
  17. 17 Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR) Universidad de Valladolid & INIA. INIA. Forest Research Centre INIA-CIFOR, Madrid. National Museum of Natural Sciences – Spanish National Research Council (MNCN-CSIC). Department of Biogeography and Global Change, Madrid.
Revista:
Forest systems

ISSN: 2171-5068

Año de publicación: 2019

Volumen: 28

Número: 1

Tipo: Artículo

DOI: 10.5424/FS/2019281-14342 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Forest systems

Objetivos de desarrollo sostenible

Resumen

Aim of study: Modelling of forest growth and dynamics has focused mainly on pure stands. Mixed-forest management lacks systematic procedures to forecast the impact of silvicultural actions. The main objective of the present work is to review current knowledge and forest model developments that can be applied to mixed forests.Material and methods: Primary research literature was reviewed to determine the state of the art for modelling tree species mixtures, focusing mainly on temperate forests.Main results: The essential principles for predicting stand growth in mixed forests were identified. Forest model applicability in mixtures was analysed. Input data, main model components, output and viewers were presented. Finally, model evaluation procedures and some of the main model platforms were described.Research highlights: Responses to environmental changes and management activities in mixed forests can differ from pure stands. For greater insight into mixed-forest dynamics and ecology, forest scientists and practitioners need new theoretical frameworks, different approaches and innovative solutions for sustainable forest management in the context of environmental and social changes.Keywords: dynamics, ecology, growth, yield, empirical, classification.

Información de financiación

systematic procedures to forecast the impact of silvicultural actions. The main objective of the present work is to review current knowledge and forest model developments that can be applied to mixed forests. Material and methods: Primary research literature was reviewed to determine the state of the art for modelling tree species mixtures, focusing mainly on temperate forests. Main results: The essential principles for predicting stand growth in mixed forests were identified. Forest model applicability in mixtures was analysed. Input data, main model components, output and viewers were presented. Finally, model evaluation procedures and some of the main model platforms were described. Research highlights: Responses to environmental changes and management activities in mixed forests can differ from pure stands. For greater insight into mixed-forest dynamics and ecology, forest scientists and practitioners need new theoretical frameworks, different approaches and innovative solutions for sustainable forest management in the context of environmental and social changes. Additional keywords: dynamics, ecology, growth, yield, empirical, classification. Authors´ contributions: FB and MF conceived the idea and structure of the article and wrote the final version of the manuscript; all other co-authors compiled and prepared information, wrote parts of the manuscript and revised different manuscript drafts. Citation: Bravo, F., Fabrika, M., Ammer, C., Barreiro, S., Bielak, K., Coll, L., Fonseca, T., Kangur, A., Löf, M., Merganičová, K., Pach, M., Pretzsch, H., Stojanović, D., Schuler, L., Peric, S., Rötzer, T., Río, M. del, Dodan, M., Bravo-Oviedo, A. (2019). Modelling approaches for mixed forests dynamics prognosis. Research gaps and opportunities. Forest Systems, Volume 28, Issue 1, eR002. https:// doi.org/10.5424/fs/2019281-14342 Received: 29 Nov 2018. Accepted: 29 Apr 2019. Copyright © 2019 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC-by 4.0) License. Funding: COST Action FP1206 EuMIXFOR (COST Association, European Comission), APVV-0480-12 and APVV-15-0265 (Slovak Research and Development Agency) and AGL-2014-51964-C2-1-R (Spanish Ministry of Economy and Competitiveness). Competing interests: The authors have declared that no competing interests exist. Correspondence should be addressed to Felipe Bravo: fbravo@pvs.uva.es

Financiadores

Referencias bibliográficas

  • Adelard L, Boyer H, Garde F, Gatina J-C, 2000. A detailed weather data generator for building simulations. Energy Build, 31: 75-88. https://doi.org/10.1016/S0378-7788(99)00009-2
  • Ameztegui A, Coll L, 2011. Tree dynamics and co-existence in the montane-sub-alpine ecotone: the role of different light-induced strategies. J Veg Sci 22: 1049-1061. https://doi.org/10.1111/j.1654-1103.2011.01316.x
  • Ameztegui A, Coll L, Messier C, 2015. Modeling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane-subalpine Pyrenean ecotones. Ecol Modell 313: 84-93. https://doi.org/10.1016/j.ecolmodel.2015.06.029
  • Ameztegui A, Cabon A, de Cáceres M, Coll L, 2017. Managing stand density to enhance the adaptability of Scots pine stands to climate change: a modelling approach. Ecol Modell 356: 141-150. https://doi.org/10.1016/j.ecolmodel.2017.04.006
  • Ammer C, Puettmann KJ, 2009. The road ahead of forest stand management - single or multiple management objectives? Forstarchiv 80: 90-96.
  • Assmann E, 1961. Waldertragskunde. Organische Produktion, Struktur, Zuwachs und Ertrag von Waldbeständen. BLV Verlagsgesellschaft: München, Bonn, Wien.
  • Assmann E, Franz F, 1965. Vorläufige Fichten-Ertragstafel für Bayern. Forstw Cbl 84: 13-43. https://doi.org/10.1007/BF01872794
  • Auger P, Lett C, 2003. Integrative biology: linking levels of organization. C. R. Biol. 326: 517-522. https://doi.org/10.1016/S1631-0691(03)00115-X
  • Backéus S, Wikström P, Lämås T, 2005. A model for regional analysis of carbon sequestration and timber production. Forest Ecol Manage 216: 28-40. https://doi.org/10.1016/j.foreco.2005.05.059
  • Barreiro S, Rua J, Tomé M, 2016. StandsSIM-MD: a Management Driven forest SIMulator. For Syst. 25(2): 1-5. https://doi.org/10.5424/fs/2016252-08916
  • Bauhus J, Puettmann KJ, Kühne C, 2013. Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. pp: 187-213 Routledge, New York.
  • Beaudet M, Harvey BD, Messier C, Coates KD, Poulin J, Kneeshaw DD, Brais S, Bergeron Y, 2011. Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: A modelling approach. Ecol Manage 261: 84-94. https://doi.org/10.1016/j.foreco.2010.09.033
  • Biber P, Knoke Th, Pretzsch H, 2013. Eine waldwachstumskundlich-ökonomische Simulationsstudie zu Effekten der Baumartenmischung Fichte-Buche. Konzept und erste ertagskundliche Ergebnisse. Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde, Jahrestagung, 13.-15.5.2013, Rychnov nad Kneznou, pp 65-74.
  • Biging GS, Dobbertin M, 1992. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees. For Sci 38: 695-720.
  • Borys A, Suckow F, Reyer C, Gutsch M, Lasch-Born P, 2016. The impact of climate change under different thinning regimes on carbon sequestration in a German forest district. Mitig Adapt Strateg Glob Change 21: 8611-21. https://doi.org/10.1007/s11027-014-9628-6
  • Botkin DB, Janak JF, Wallis, JR, 1972. Some Ecological Consequences of a ComputerModel of Forest Growth. J Ecol 60: 849-872. https://doi.org/10.2307/2258570
  • Brandtberg T, 1999. Automatic Individual Tree-Based Analysis of High Spatial Resolution Remotely Sensed Data. Acta Universitatis Agriculturae Sueciae. https://doi.org/10.1139/x99-150
  • Bravo F, Bravo-Oviedo A, Diaz-Balteiro L, 2008. Carbon sequestration in Spanish Mediterranean forests under two management alternatives: a modeling approach. Eur J For Res 127: 225-234. https://doi.org/10.1007/s10342-007-0198-y
  • Bravo F, Rodríguez F, Ordóñez C, 2012. A web-based application to simulate alternatives for sustainable forest management: SIMANFOR. Forest Systems 21: 4-8. https://doi.org/10.5424/fs/2112211-01953
  • Bravo F. 2005. Dinámica de rodales de pino negral (Pinus pinaster Ait.) en el Sistema Ibérico Meridional: Estructura genética, regeneración y dinámica forestal. Informe final del proyecto AGL-2001-1780.
  • Bravo-Oviedo A, Barreiro S, Strelcova K, Pretzsch H. 2014. EuMIXFOR Introduction: integrating scientific knowledge in sustainable management of mixed forests. Forest Systems 23: 515-517. https://doi.org/10.5424/fs/2014233-07050
  • Bravo-Oviedo A, Río M, Montero G, 2004. Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain. Ecol Manage 201: 187-197. https://doi.org/10.1016/j.foreco.2004.06.031
  • Brunner A, 1998. A light model for spatially explicit forest stand models. For Ecol Manage 107: 19-46. https://doi.org/10.1016/S0378-1127(97)00325-3
  • Brzeziecki B, 1999. Ecological stand model. Construction. Parametrization. Examples of its use. WULS, Warsaw.
  • Bugmann H, 1996. A simplified forest model to study species composition along climate gradients, Ecology 77: 2055-2074. https://doi.org/10.2307/2265700
  • Cademus R, Escobedo FJ, McLaughlin D, Abd-Elrahman A, 2014. Analyzing trade-offs, synergies, and drivers among timber production, carbon sequestration, and water yield in Pinus elliotii forests in southeastern USA. Forests 5: 1409-1431. https://doi.org/10.3390/f5061409
  • Canham CD, LePage PT, Coates KD, 2004. A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J Res 34: 778-787. https://doi.org/10.1139/x03-232
  • Canham CD, Murphy LE, Papaik MJ, 2005. SORTIE-ND: Software for spatially explicit simulation of forest dynamics. Institute of Ecosystem Studies: Millbrook, NY.
  • Canham CD, Papaik MJ, Latty EF, 2001. Interspecific variation in susceptibility to windthrow as a function of tree size and storm severity for northern temperate tree species. Can J Res 31: 1-10. https://doi.org/10.1139/cjfr-31-1-1
  • Canham CD, Papaik MJ, Uriarte M, McWilliams WH, Jenkins JC, Twery MJ, 2006. Neighborhood analyses of canopy tree competition along environmental gradients in New England forests. Ecol Appl 16: 540-554. https://doi.org/10.1890/1051-0761(2006)016[0540:NAOCTC]2.0.CO;2
  • Clemence BSE, 1997. A brief assessment of a weather data generator (CLIMGEN) at Southern African sites. Short Communication. Water SA 23: 271-274.
  • Clutter JL, 1963. Compatible growth and yield models for loblolly pine. Forest Science, Vol. 9, pp 354-371.
  • Coll L, Ameztegui A, Collet C, Löf M, Mason B, Pach M, Verheyen K, Abrudan I, Barbati A, Barreiro S, et al. 2018. Knowledge gaps about mixed forests: what do European forest managers want to know and what answers can science provide? Forest Ecology and Management 407: 106-115. https://doi.org/10.1016/j.foreco.2017.10.055
  • Collalti A, Perugini L, Santini M, Chiti T, Nolè A, Matteucci G, Valentini R, 2014. A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC forest ecosystem model in a deciduous forest in Central Italy. Ecol Modell 272: 362-378. https://doi.org/10.1016/j.ecolmodel.2013.09.016
  • del Río M, Pretzsch H, Alberdi I, Bielak K, Bravo F, Brunner A, Condés S, Ducey MJ, Fonseca T, von Lüpke N, et al. 2016. Characterization of the structure, dynamics, and productivity of mixed-species stands: review and perspectives. Eur J For Res 135: 23-49. https://doi.org/10.1007/s10342-015-0927-6
  • del Río, M, Bravo-Oviedo, A, Ruiz-Peinado, R, Condés, S, 2019. Tree allometry variation in response to intra- and inter-specific competitions. Trees 33, 121-138 https://doi.org/10.1007/s00468-018-1763-3
  • Diaci J (Ed.), 2006. Nature-based forestry in Central Europe. Alternatives to industrial forestry and strict preservation. In Studia Forestalia Lovenica 126, Biotechnical Faculty, Department of Forestry and Renewable Forest Resources Slowenia: Ljubljana.
  • Donatelli M, Bellocchi G, Habyarimana E, Bregaglio S, Confalonieri R, Baruth B, 2009. CLIMA: a weather generator framework. In 18th World IMACS / MODSIM Congress Cairns, Australia.
  • Dubrovský M, 1997. Creating daily weather series with use of the weather generator. Environmetrics 8: 409-424. 3.0.CO;2-0" target="_blank">https://doi.org/10.1002/(SICI)1099-095X(199709/10)8:5<409::AID-ENV261>3.0.CO;2-0
  • Ducey, MJ, 2012. Evergreenness and wood density predict height-diameter scaling in trees of the northeastern United States. Forest Ecol Manage 279, 21-26. https://doi.org/10.1016/j.foreco.2012.04.034
  • Dufour-Kowalski S, Courbaud B, Dreyfus P, Meredieu C, de Coligny F, 2012. Capsis: an open software framework and community for forest growth modelling. Ann For Sci 69: 221-233. https://doi.org/10.1007/s13595-011-0140-9
  • Duursma, RA, Mäkelä, A, Reid, DEB, Jokela, EJ, Porté, AJ, Roberts, SD, 2010. Self-shading affects allometric scaling in trees Functional Ecology 24:723-730 https://doi.org/10.1111/j.1365-2435.2010.01690.x
  • Ek AR, Monserud RA, 1974. Trials with program FOREST Growth and reproduction simulation for mixed species even- or uneven-aged forest stands. In: FRIES, J. (Hrsg.) Growth models for tree and stand simulation. Royal College of Forestry, Stockholm, Sweden, Research Notes, No. 30, pp. 56-73.
  • Elfving, B. 2011a. A stand basal area growth function for whole Sweden. In: Growth modelling in the Heureka system. SLU, Faculty of Forestry. Working paper, June 14, 2011.
  • Elfving, B. 2011b. Basal area growth functions for single trees. In: Growth modelling in the Heureka system. SLU, Faculty of Forestry. Working paper, June 14, 2011.
  • Fabrika M, 2003. Virtual forest stand as a component of sophisticated forestry educational systems. J For Sci 49: 419-428. https://doi.org/10.17221/4715-JFS
  • Fabrika M, 2005. Simulátor biodynamiky lesa SIBYLA. Koncepcia, konštrukcia a programové riešenie. Habilitačná práca, Technická univerzita vo. Zvolene 238.
  • Fabrika M, 2007. Simulátor biodynamiky lesa SIBYLA, koncepcia, konštrukcia a programové riešenie, habilitačná práca, Technická univerzita vo. Zvolene 328.
  • Fabrika M, Ďurský J, 2005. Algorithms and software solution of thinning models for SIBYLA growth simulator. J For Sci 51: 431-445. https://doi.org/10.17221/4577-JFS
  • Fabrika M, Vaculčiak T, 2009. Modeling Natural Disturbances in Tree Growth Model SIBYLA. In Bioclimatology and Natural Hazards, Střelcová K, Matyas C, Kleidon A, et al. (eds). Springer, 155-164. https://doi.org/10.1007/978-1-4020-8876-6_14
  • Fabrika M, Pretzsch H, 2013. Forest ecosystem analysis and modelling. Technical university of Zvolen, Department of forest management and geodesy. 620 pp.
  • Fabrika M, Pretzsch H, Bravo F, 2018. Models for mixed forests. In Dynamics, Silviculture and Management of mixed forests Bravo-Oviedo et al. (eds.), Springer Berlin Heidelberg. Pp. 343-380. https://doi.org/10.1007/978-3-319-91953-9_10
  • Fahlvik N, Elfving B, Wikström P, 2014. Evaluation of growth functions used in the Swedish Forest Planning System Heureka. Silva Fennica 48(2):1013. https://doi.org/10.14214/sf.1013
  • Fischer R, Armstrong A, Shugart HH, Huth A, 2014. Simulating the impacts of reduced rainfall on carbon stocks and net ecosystem exchange in a tropical forest. Environ Model Softw 52: 200-206. https://doi.org/10.1016/j.envsoft.2013.10.026
  • Forrester DI, Tang X, 2015. Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model. Ecol Modell 319: 233-254. https://doi.org/10.1016/j.ecolmodel.2015.07.010
  • Forrester, DI, Ammer, C, Annighöfer, PJ, Barbeito, I, Bielak, K, Bravo-Oviedo, A, Coll, L, del Río, M, Drössler, L, Heym, M, et al 2018. Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe. J Ecol 106:746-760. https://doi.org/10.1111/1365-2745.12803
  • Fortin M, Bédard S, DeBlois J, Meunier, S, 2009. Assessing and testing prediction uncertainty for single tree-based models: A case study applied to northern hardwood stands in southern Québec, Canada. Ecol Modell 220(20): 2770-2781. https://doi.org/10.1016/j.ecolmodel.2009.06.035
  • Franc A, Gourlet-Fleury S, Picard N, 2000. Une Introduction á la Modélisation des Forêts Hétérogènes. ENGREF, Nancy, France.
  • Fridman J., Holm S., Nilsson M., Nilsson P., Ringvall A.H., Ståhl G. 2014. Adapting National Forest Inventories to changing requirements - the case of the Swedish National Forest Inventory at the turn of the 20th century. Silva Fennica 48(3) article id 1095. https://doi.org/10.14214/sf.1095
  • Fürstenau C, Badeck FW, Lasch P, Lexer MJ, Lindner M, Mohr P, Suckow F, 2007. Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur J For Res 126: 225-239. https://doi.org/10.1007/s10342-006-0114-x
  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, 2013. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Comm 4. https://doi.org/10.1038/ncomms2328
  • Geng S, Auburn J, Brandstetter E, Li B, 1988. A Program to Simulate Meteorological Variables. Documentation for SIMMETEO. Agronomy Report No. 204. University of California, Davis Crop Extension, Davis, California.
  • Geng S, Penning de Vries FWT, Supit I, 1986. A simple method for generating daily rainfall data. Agric Meteorol 36: 363-376. https://doi.org/10.1016/0168-1923(86)90014-6
  • Gertner G, 1987. Approximating precision in simulation projections: an efficient alternative to Monte Carlo methods, For Sci 33: 230-239.
  • Gertner G, Dzialowy PJ, 1984. Effects of measurement errors on an individual tree-based growth projection system. Can J For Res 14: 311-316. https://doi.org/10.1139/x84-057
  • Grote R, Pretzsch H, 2002. A model for individual tree development based on physiological processes. Plant Biol 4: 167-180. https://doi.org/10.1055/s-2002-25743
  • Hannertz M, Boje L, Löf M, 2010. Internet as a tool for knowledge-building among private forest owners in Sweden. Ecol Bul 53: 225-234.
  • Hansen JW, Mavromatis T, 2001. Correcting low-frequency variability bias in stochastic weather generators. Agric Meteorol 109: 297-310. https://doi.org/10.1016/S0168-1923(01)00271-4
  • Hasenauer H (Ed.), 2006. Sustainable forest management. Growth models for Europe. Springer, Berlin: Heidelberg. https://doi.org/10.1007/3-540-31304-4
  • Hasenauer H, 1994. Ein Einzelbaumwachstumssimulator für ungleichaltrige Kiefern- und Buchen- Fichtenmischbestände. Forstl Schr Univ Bodenkultur. Wien.
  • Hauhs M, Kastner-Maresch A, Rost-Siebert K 1995. A model relating forest growth to ecosystem-scale budgets of energy and nutrients. Ecol Modell 83: 229-243. https://doi.org/10.1016/0304-3800(95)00101-Z
  • Hayhoe HN, 2000. Improvements of stochastic weather data generators for diverse climates. Clim Res 14: 75-87. https://doi.org/10.3354/cr014075
  • Heureka, 2010. The Heureka Research Programme. Final report for phase 2, October 2005 - September 2009. Swedish University of Agricultural Sciences. 119 pp.
  • Holdridge LR, 1947. Determination of World Plant Formations from Simple Climatic Data. Science 105: 367-369. https://doi.org/10.1126/science.105.2727.367
  • Houllier F, 1995. A propos des modèles de la dynamique des peuplements hétérogènes: structures, processus démographiques et mécanismes de regulation. Rev Ecol 50: 273-282.
  • Huth R, Mládek R, Metelka L, Sedlák P, Huthová Z, Kliegrová S, Kyselý J, Pokorná L, Halenka T, Janoušek M, 2003. On the integrability of limited-area numerical weather prediction model ALADIN over extended time periods. Stud Geophys Geod 47: 863-873. https://doi.org/10.1023/A:1026351004242
  • Hynynen J, Ojansuu R, 2003. Impact of plot size on individual-tree competition measures for growth and yield simulators. Can J For Res 33(3): 455-465. https://doi.org/10.1139/x02-173
  • Jones PG, Thornton PK, 2000. MarkSim: software to generate daily weather data for Latin America and Africa. Agron J 92(3): 445-453 https://doi.org/10.2134/agronj2000.923445x
  • Kahn M, 1994. Modellierung der Höhenentwicklung ausgewählter Baumarten in Abhängigkeit vom Standort. Forstl. Forschungsber Münch. 141.
  • Kahn M, 1995. Die Fuzzy Logik basierte Modellierung von Durchforstungseingriffen. Allg.Forst-u.J.-Ztg., 166. Jg., 9-10, s. 169-176.
  • Kangas A, 1997. On the prediction bias and variance of long-term growth predictions, For Ecol Manage 96: 207-216. https://doi.org/10.1016/S0378-1127(97)00056-X
  • Kangas AS, 1999. Methods for assessing uncertainty of growth and yield predictions Can J For Res 29: 1357-1364. https://doi.org/10.1139/cjfr-29-9-1357
  • Kellomäki S, Vaisanen H, 1997. Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecol Modell 97: 121-140. https://doi.org/10.1016/S0304-3800(96)00081-6
  • Kenk G, Guehne S, 2001. Management of transformation in central Europe. For Ecol Manage 151: 107-119. https://doi.org/10.1016/S0378-1127(00)00701-5
  • Kimmins JP, Comeau PG, Kurz W, 1990a. Modelling the interactions between moisture and nutrients in the control of forest growth. Ecol Manage 30: 361-379. https://doi.org/10.1016/0378-1127(90)90149-6
  • Kimmins JP, Mailly D, Seely B, 1999. Modelling forest ecosystem net primary production: The hybrid simulation approach used in FORECAST. Ecol.Modell 122: 195-224. https://doi.org/10.1016/S0304-3800(99)00138-6
  • Kimmins JP, Scoullar KA, Apps MJ, Kurz WA, 1990b. The FORCYTE experience: a decade of model development. Proc. Symp. Forestry Canada Inf. Rep. pp: 60-67.
  • Klemmt HJ, Tauber R, 2008. Automatisierte Ermittlung forstinventurrelevanter Parameter aus 3D-Laserscanning-Daten sowie aus 2D-DendroScandaten - Eine vergleichende Feldstudie. DVFFA - Sektion Ertragskunde, Jahrestagung 2008, Trippstadt, May 5.-8. pp: 169-179.
  • Köhler P, Huth A, 1998. The effects of tree species grouping in tropical rainforest modelling: simulations with the individual-based model FORMIND. Ecol Modell 109: 301-321. https://doi.org/10.1016/S0304-3800(98)00066-0
  • Komarov A, Chertov O, Zudin S, Nadporozhskaya M, Mikhailov A, Bykhovets S, Zudina E, Zoubkova E, 2003. EFIMOD 2 - a model of growth and cycling of elements in boreal forest ecosystems. Ecol Modell 170: 373-392. https://doi.org/10.1016/S0304-3800(03)00240-0
  • Kurth W, 1994. Growth Grammar Interpreter GROGRA 2.4: A software tool for 3-dimensional interpretation of stochastic, sensitive growth grammars in the context of plant modelling. Intoduction and Reference Manual. Berichte des Forsungszentrums Waldökosysteme der. Univ. Gött. Ser B 38.
  • Lafond V, Cordonnier T, Courbaud B, 2015. Reconciling biodiversity conservation and timber production in mixed uneven-aged mountain forests: identification of ecological intensification pathways. Environ Manage: 1-16. https://doi.org/10.1007/s00267-015-0557-2
  • Lämås T, Eriksson LO, 2003. Analysis and planning systems for multiresource, sustainable forestry: the Heureka research programme at SLU. Can J Forest Res 33(3): 500-508. https://doi.org/10.1139/x02-213
  • Landsberg JJ, Waring RH, 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manage 95: 209-228. https://doi.org/10.1016/S0378-1127(97)00026-1
  • LeGuerrier C, Marceau DJ, Bouchard A, Brisson J, 2003. A modelling approach to assess the long-term impact of beech bark disease in northern hardwood forest. Can. J For Res 33: 2416-2425. https://doi.org/10.1139/x03-170
  • Lindner M, Badeck FW, Bartelheimer P, Bonk S, Cramer W, Dieter M, Wolff B, 2002. Integrating forest growth dynamics, forest economics and decision making to assess the sensitivity of the German forest sector to climate change. Forstwiss. Cent. 121: 191-208.
  • Lischke H, 2001. New developments in forest modeling: convergence between applied and theoretical approaches. Nat Resour Modell 14: 71-102. https://doi.org/10.1216/nrm/1020433098
  • Liu JG, Ashton PS, 1998. FORMOSAIC: An Individual Based, Spatially Explicit Model for Simulating Forest. Ecol Modell 106: 177-200. https://doi.org/10.1016/S0304-3800(97)00191-9
  • Lonsdale J, Minunno F, Mencuccini M, Perks M, 2015. Bayesian calibration and Bayesian model comparison of a stand level dynamic growth model for Sitka spruce and Scots pine. Forestry 88: 326-335. https://doi.org/10.1093/forestry/cpv003
  • Lutz DA, Burakowski EA, Murphy MB, Borsuk ME, Niemiec RM, Howarth RB, 2016. Tradeoffs between three forest ecosystem services across the state of New Hampshire, USA: timber, carbon, and albedo. Ecol Appl 26(1):146-161. https://doi.org/10.1890/14-2207
  • MacFarlane DW, Green EJ, Valentine HT, 2000. Incorporating uncertainty into the parameters of a forest process model. Ecol Modell 134:27-40. https://doi.org/10.1016/S0304-3800(00)00329-X
  • Mäkelä A, del Río M, Hynynen J, Hawkins MJ, Reyer C, Soares P, Tomé M, 2012. Using stand-scale forest models for estimating indicators of sustainable forest management. For Ecol Manage 285: 164-178. https://doi.org/10.1016/j.foreco.2012.07.041
  • Mäkelä A, Sievänen R, Lindner M, Lasch P, 2000. Application of volume growth and survival graphs in the evaluation of four process-based forest growth models. Tree Physiol 20: 347-355. https://doi.org/10.1093/treephys/20.5-6.347
  • Mäkinen A, 2010.Uncertainty in forest simulators and forest planning systems, Dissertationes Forestalis 97, 38 pp. https://doi.org/10.14214/df.97
  • McCaskill MR, 1990. TAMSIM-a program for preparing meteorological records for weather driven models. Trop. Agron. Tech. Memo 65.
  • Mendoza G.A., Vanclay J.K., 2008. Trends in forestry modelling; CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3(10) 8 pp. https://doi.org/10.1079/PAVSNNR20083010
  • Merganič J, Fabrika M, 2011. Modelling natural regeneration in SIBYLA tree growth simulator. Verband Forstlicher Forschungsanstalten: Sektion Ertragskunde, Jahrestagung, 6.- 8. Juni 2011, Cottbus, ISSN Deutscher: In; 1432-2609.
  • Merganič J, Sterba H, 2006. Characterisation of diameter distribution using the Weibull function: method of moments. Eur J For Res 125: 427-439. https://doi.org/10.1007/s10342-006-0138-2
  • Meyer HA, 1952. Structure, growth and drain in balanced uneven-aged forests. J. Fores. 50: 85-92.
  • Mika AM, Keeton WS, 2015. Net carbon fluxes at stand and landscape scales from wood bioenergy harvests in the US Northeast. GCB Bioenergy 7: 438-454. https://doi.org/10.1111/gcbb.12143
  • Monserud RA, Sterba H, 1996. A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria. Ecol Manage 80: 57-80. https://doi.org/10.1016/0378-1127(95)03638-5
  • Monserud RA, Ledermann T, Sterba H. 2005. Are self-thinning constraints needed in a tree-specific mortality model? For Sci 50: 848-858
  • Mora V, del Río M, Bravo-Oviedo A, 2012. Dynamics growth and yield model for Black pine stands in Spain. Forest Systems 21: 439-445. https://doi.org/10.5424/fs/2012213-02722
  • Mowrer HT, 1991. Estimating components of propagated variance in growth simulation model projections. Can J For Res 21: 379-386 https://doi.org/10.1139/x91-047
  • Mowrer HT, Frayer WE, 1986. Variance propagation in growth and yield projections. Can J For Res 16: 1196-1200. https://doi.org/10.1139/x86-213
  • Munro DD, 1974. Forest growth-models: A prognosis Res. Note 30 R. Coll. For. Stock. Swed.: 7-21.
  • Nagel J, Biging GS, 1995. Schätzung der Parameter der Weibullfunktion zur Generierung von Durchmesserverteilungen. Allg. Forst- Jagdztg. 166: 185-189.
  • Nagel J, Schmidt M, 2006. The Silvicultural Decision Support System BWINPro; Hasenauer (ed) pp 59-63. Springer, Berlin. https://doi.org/10.1007/3-540-31304-4_4
  • O'Hara K, 2001. The silviculture of transformation - a commentary. For. Ecol Manage 151: 81-86. https://doi.org/10.1016/S0378-1127(00)00698-8
  • Papaik MJ, Canham CD, 2006. Species resistance and community response to wind disturbance regimes in northern temperate forests. J Ecol 94: 1011-1026. https://doi.org/10.1111/j.1365-2745.2006.01153.x
  • Pommerening A, Biber P, Stoyan D, Pretzsch H, 2000. Neue Methoden zur Analyse und Charakterisierung von Bestandesstrukturen. Forstwiss. Cent.bl. 119(1-6): 62-78. https://doi.org/10.1007/BF02769127
  • Pommerening A. 1999. Methoden zur Reproduktion und Forstschreibung einzelner konzentrischer Proberkreise von Betriebs- und Landeswaldinventuren. In DVFF - Sektion Ertragskunde, Volpriehausen.
  • Poore A, 2011. The Marteloscope. A Training Aid for Continuous Cover Forest Management. Woodland Heritage 28-29.
  • Porte A, Bartelink HH, 2002. Modelling mixed forest growth: a review of models for forest management. Ecol Modell 150: 141-188. https://doi.org/10.1016/S0304-3800(01)00476-8
  • Pretzsch H, 1993. Analyse und Reproduktion räumlicher Bestandesstrukturen. Versuche mit dem Strukturgenerator STRUGEN. Schriften aus der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen. J Sauerländer's Verl. Frankf. Am Main 87.
  • Pretzsch H, 1995. Zum Einfluß des Baumverteilungsmusters auf den Bestandszuwachs. Allg Forst- Jagdztg. 166(9-10): 190-201.
  • Pretzsch H, 2001. Modellierung des Waldwachstums. Parey Buchverlag Berl. 341.
  • Pretzsch H, 2002. Application and evaluation of the growth simulator SILVA 2.2 for forest stands, forest estates and large regions. Forstw Cbl 121: 28-51.
  • Pretzsch H, 2009. Forest Dynamics, Growth and Yield. From Measurement to Model. Springer, Berlin 664 pp. https://doi.org/10.1007/978-3-540-88307-4
  • Pretzsch H, Block J, Dieler J, Dong PH, Kohnle U, Nagel J, Spellmann H, Zingg A, 2010. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 67: 712. https://doi.org/10.1051/forest/2010037
  • Pretzsch H, del Río M, Schütze G, Ammer C, Annighöfer P, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, et al. 2016. Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with humidity. For Ecol Manage 373: 149-166. https://doi.org/10.1016/j.foreco.2016.04.043
  • Pretzsch H, Forrester DI, Rötzer T, 2015. Representation of species mixing in forest growth models. A review and perspective. Ecol. Modell 313: 276-292. https://doi.org/10.1016/j.ecolmodel.2015.06.044
  • Pretzsch H, Grote R, Reineking B, Rötzer TH, 2008. Models for forest ecosystem management: a European perspective. Ann Bot 101: 1065-1087. https://doi.org/10.1093/aob/mcm246
  • Pretzsch H, Grote R, Reineking B, Rötzer T, Seifert S, 2007. Review: Models for Forest Ecosystem Management. Eur. Perspect. Ann Bot 1-23.
  • Pretzsch H, Schütze G, Uhl E, 2013. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15: 483-495. https://doi.org/10.1111/j.1438-8677.2012.00670.x
  • Pretzsch H, Biber P, Ďurský J. 2002. The single tree-based stand simulator SILVA: construction, application and evaluation. For Ecol Manage 162(1): 3-21. https://doi.org/10.1016/S0378-1127(02)00047-6
  • Prusinkiewicz P, Lindenmayer A, 1990. The Algorithmic Beauty of Platns. Springer-Verlag, New York, 228 pp. https://doi.org/10.1007/978-1-4613-8476-2
  • Pukkala T, 1989. Methods to describe the competition process in a tree stand. Scand J For Res 4: 187-202. https://doi.org/10.1080/02827588909382557
  • Pukkala T, 2015. Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic. For Ecosyst.2: 1-13. https://doi.org/10.1186/s40663-015-0028-5
  • Pukkala T, Koloström T, 1987. Competition indices and the prediction of radial growth in scots pine. Silva Fenn 21: 55-67. https://doi.org/10.14214/sf.a15463
  • Pukkala T, Lähde E, Laiho O, 2009. Growth and yield models for uneven-sized forest stands in Finland. For Ecol Manage 258: 207-216. https://doi.org/10.1016/j.foreco.2009.03.052
  • Purves D, Pacala S, 2008. Predictive models of forest dynamics. Science 320: 1452-1453. https://doi.org/10.1126/science.1155359
  • Rastetter EB, King AW, Cosby BJ, Hornberger GM, Oneill RV, Hobbie JE, 1992. Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems. Ecol Appl 2: 55-70. https://doi.org/10.2307/1941889
  • Rennolls K, Tomé M, McRoberts RE, Vanclay JK, LeMay V, Guan BT, Gertner G, 2007. Potential contributions of statistics and modelling to sustainable forest management: review and synthesis. In Sustainable Forestry: from Monitoring and Modelling to Knowledge Management & Policy Science; Reynolds, KM (ed). 20: 314-341. https://doi.org/10.1079/9781845931742.0314
  • Reyer CPO, Bugmann H, Nabuurs GJ, Hanewinkel M, 2015. Models for adaptive forest management. Reg. Environ. Change 15(8): 1483-1487. https://doi.org/10.1007/s10113-015-0861-7
  • Ribbens E, Silander JA, Pacala SW, 1994. Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75: 1794-1806. https://doi.org/10.2307/1939638
  • Richardson CW, Wright DA, 1984. WGEN: a model for generating daily weather variables. US Dep. Agric. Agric. Res. Serv. ARS-8.
  • Riofrio J, Río M del, Bravo F, 2017. Mixing effects on growth efficiency in mixed pine forests. Forestry 90(3): 381-392 https://doi.org/10.1093/forestry/cpw056
  • Rollin F, Buongiorno J, Zhou M, Peyron JL, 2005. Management of mixed-species, uneven-aged forests in the French Jura: from stochastic growth and price models to decision tables. For Sci 51: 64-75.
  • Rothe A, Binkley D, 2001. Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31: 1855-1870. https://doi.org/10.1139/cjfr-31-11-1855
  • Rötzer T, Seifert T, Pretzsch H, 2009. Modelling above and below ground carbon dynamics in a mixed beech and spruce stand influenced by climate. Eur J Res 128: 171-182. https://doi.org/10.1007/s10342-008-0213-y
  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S, 2008. Global sensitivity analysis: the primer. John Wiley & Sons. 304 pp. https://doi.org/10.1002/9780470725184
  • Schadauer K, Barreiro S, Schelhaas MJ, McRoberts RE, 2017. Future Challenges for Woody Biomass Projections, In: Forest Inventory-based Projection Systems for Wood and Biomass Availability. Barreiro S, Schelhaas MJ, McRoberts RE, Kaendler G (eds). Springer, pp. 69-76. https://doi.org/10.1007/978-3-319-56201-8_5
  • Schall P, Schulze E-D, Fischer M, Ayasse M, Ammer C. 2018. Relations between forest management, stand structure and productivity across different types of Central European forests. Basic Appl Ecol 32:39-52. https://doi.org/10.1016/j.baae.2018.02.007
  • Schmid I, Kazda M, 2001. Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Can J For Res 31: 539-548. https://doi.org/10.1139/cjfr-31-3-539
  • Schmid I, Kazda M, 2002. Root distribution of Norway spruce in monospecific and mixed stands on different soils. For Ecol Manage 159: 37-47. https://doi.org/10.1016/S0378-1127(01)00708-3
  • Schmid S, Thürig E, Kaufmann E, Lischke H, Bugmann H, 2006. Effect of forest management on future carbon pools and fluxes: A model comparison. For Ecol Manage 237: 65-82. https://doi.org/10.1016/j.foreco.2006.09.028
  • Schumacher S., Bugmann H., Mladenoff D.J. 2004. Improving the formulation of tree growth and succession in a spatially explicit landscape model Ecol Modell 180: 175-194. https://doi.org/10.1016/j.ecolmodel.2003.12.055
  • Schumacher S, Reineking B, Sibold J, Bugmann H, 2006. Modeling the impact of climate and vegetation on fire regimes in mountain landscapes Landsc Ecol 21: 539-554. https://doi.org/10.1007/s10980-005-2165-7
  • Schütz J, 1999. Close-to-nature silviculture: is this concept compatible with species diversity? Forestry 72: 359-366. https://doi.org/10.1093/forestry/72.4.359
  • Schwappach A, 1889. Wachsthum und Ertrag normaler Kiefernbestände in der norddeutschen Tiefebene. Verl. Julius Springer Berl. 72. https://doi.org/10.1007/978-3-642-99048-9
  • Schwenk WS, Donovan TM, Keeton WS, Nunery JS, 2012. Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis. Ecol Appl 22: 1612-1627. https://doi.org/10.1890/1051-0761-22.5.1612
  • Seidl R, Rammer W, Lasch P, Badeck F, Lexer MJ, 2008. Does conversion of even-aged, secondary coniferous forests affect carbon sequestration? A simulation study under changing environmental conditions. Silva Fenn 42: 369-386. https://doi.org/10.14214/sf.243
  • Seifert S, 1998. Dreidimensionale Visualisierung des Waldwachstums. Diplomarbeit im Fachbereich Informatik der Fachhochschule München in Zusammenarbeit mit dem Lehrstuhl für Waldwachstumskunde der Ludwig-Maximillians-Universität. München, München; 133 pp.
  • Semenov MA, Brooks RJ, Barrow EM, Richardson CW, 1998. Comparison of WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res 10: 95-107. https://doi.org/10.3354/cr010095
  • Shanin V, Mäkipää R, Shashkov M, Ivanova N, Shestibratov K, Moskalenko S, Rocheva L, Grabarnik P, Bobkova K, Manov A, et al. 2015. New procedure for the simulation of belowground competition can improve the performance of forest simulation models. Eur J For Res 134: 1055-1074. https://doi.org/10.1007/s10342-015-0909-8
  • Shifley SR, He HS, Lischke H, Wang WJ, Jin W, Gustafson EJ, Thompson III FR, Dijak WD, Yang J, 2017. The past and future of modeling forest dynamics:from growth and yield curves to forest landscape models Landsc Ecol 32:1307-1325. https://doi.org/10.1007/s10980-017-0540-9
  • Shugart HH, 1984. A Theory of Forest Dynamics. The Ecological Implications of Forest Succesion Models. Springer-Verlag: New York, Berlin, Heidelberg. 278 pp.
  • Soares P, Tomé M, Skovsgaard JP, Vanclay JK. 1995. Evaluating a growth model for forest management using continuous forest inventory data. For Ecol Manage 71: 251-265. https://doi.org/10.1016/0378-1127(94)06105-R
  • Söderberg U. 1986. Funktioner för skogliga produktionsprognoser -Tillväxt och formhöjd för enskilda trädslag I Sevrige. Functions for forecasting of timber yields - increment and form height for individual trees of native species in Sweden. Swedish University of Agricultural Sciences, Section of Forest Mensuration and Management. Report No. 14. 251s.
  • Söderbergh I, Ledermann T. 2003. Algorithms for simulating thinning and harvesting in five European individual-tree growth simulators: a review. Comput Electron Agric 39: 115-140. https://doi.org/10.1016/S0168-1699(03)00022-X
  • Surový P, Ribeiro N, Oliveira AC, Scheer Ľ. 2004. Discrimination of vegetation from the background in high resolution colour remote sensed imagery. J For Sci 50: 161-170. https://doi.org/10.17221/4611-JFS
  • Sverdrup H, Stjernquist, I (Eds.). 2002. Developing principles and models for sustainable forestry in Sweden. Volume 5, Managing forest ecosystems, Kluwer Academic Publishers, 480 pp. https://doi.org/10.1007/978-94-015-9888-0
  • Temesgen H, Mitchell SJ, 2005. An individual-tree mortality model for complex stands of southeastern British Columbia. West J Appl For 20:101-109.
  • Teufel K. von, HS, Kotar M, Preuhsler EP, Puumalainen J, Weinfurter P, 2006. End user needs and requirements. In: Sustainable forest management: Growth models for Europe. Hasenauer, H. Springer (Ed.). pp. 19-35. https://doi.org/10.1007/3-540-31304-4_2
  • Uriarte M, Canham CD, Thompson J, Zimmerman JK, Brokaw N, 2005. Seedling recruitment in a hurricane-driven tropical forest: light limitation, density-dependence and the spatial distribution of parent trees. J Ecol 93: 291-304. https://doi.org/10.1111/j.0022-0477.2005.00984.x
  • van Oijen M, Reyer C, Bohn FJ, Cameron DR, Deckmyn G, Flechsig M, Härkönen S, Hartig F, Huth A, Kiviste A, et al 2013. Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. For Ecol Manage 289: 255-268. https://doi.org/10.1016/j.foreco.2012.09.043
  • Vanclay JK, 1994. Modelling forest growth and yield (Application to mixed tropical forests). CAB Int. Wallingford UK. 312 pp.
  • Vanclay JK, Skovsgaard JP, 1997. Evaluating forest growth models. Ecol Modell 98: 1-12. https://doi.org/10.1016/S0304-3800(96)01932-1
  • Vilà M, Carrillo-Gavilán A, Vayreda J, Bugmann H, Fridman J, Grodzki W, Trasobares A, 2013. Disentangling biodiversity and climatic determinants of wood production. PLoS One 8: 53530. https://doi.org/10.1371/journal.pone.0053530
  • Weiskittel AR, Hann DW, Kershaw Jr JA, Vanclay JK, 2011. Forest growth and yield modeling. John Wiley & Sons. 430 pp. https://doi.org/10.1002/9781119998518
  • Weiskittel AR, Kuehne C, McTague JP, Oppenheimer M. 2016. Development and evaluation of an individual tree growth and yield model for the mixed species forest of the Adirondacks Region of New York, USA. For Ecosyst 3: 26. https://doi.org/10.1186/s40663-016-0086-3
  • Wiedemann E, 1942. Der gleichaltrige Fichten-Buchen-Mischbestand. Mitt Forstwirtsch Forstwiss 13: 1-88.
  • Wikström P, Edenius L, Elfving B, Eriksson LO, Lämås T, Sonesson J, Öhman K, Wallerman J, Waller C, Klinterbäck F, 2011. The Heureka forestry decision support system: an overview. Mathematical and Computational Forestry and Natural-Resources Sciences 3(2): 87-94.
  • Wykoff WR, Crookston NL, Stage AR, 1982. User's Guide to the stand prognosis. General Technical Report INT-133. 112 pp. https://doi.org/10.2737/INT-GTR-133
  • Zajączkowski J, 2006. Application of FORLAS 2.1 ecological model to forest stand development study. Ann WAU Wood Techn 60.
  • Zhang S, Amateis RL, Burkhart HE, 1997. Constraining individual tree diameter increment and survival models for loblolly pine plantations. For Sci 43: 414-423.
  • Zhao DH, Borders B, Wilson M, 2004. Individual-tree diameter growth and mortality models for bottomland mixed-species hardwood stands in the lower Mississippi alluvial valley. For Ecol Manage 199:307-322. https://doi.org/10.1016/j.foreco.2004.05.043