Crystallinity of cellulose microfibers derived from Cistus ladanifer and Erica arborea shrubs
- Carrión-Prieto, Paula
- Martín-Ramos, Pablo
- Hernández-Navarro, Salvador
- Sánchez-Sastre, Luis F.
- Marcos-Robles, José Luís
- Martín-Gil, Jesús
ISSN: 0717-3644, 0718-221X
Any de publicació: 2019
Volum: 21
Número: 4
Pàgines: 447-456
Tipus: Article
Altres publicacions en: Maderas: Ciencia y tecnología
Resum
The effectiveness of the use of cellulose fibers as particulates/composite reinforcers involves the assessment of the crystallinity of such fibers. The aim of the present work is to provide information on the degree of crystallinity of the cellulose microfibers obtained from the stems of Cistus ladanifer and Erica arborea shrubs through two different methods, namely an alkaline treatment and a microwave-assisted deep eutectic solvent (DES) method. The crystallinity indexes (CrI) obtained from X-ray powder diffraction patterns indicated that higher CrI were attained for cellulose obtained from the DES treatment. Complementary information on the degree of crystallinity was also retrieved from attenuated total reflection- Fourier transform infrared spectroscopy (ATR-FTIR) vibrational spectra, scanning electron microscopy (SEM) micrographs, and accessibility data for the DES-treated celluloses from the two species. The crystallinity results for the fibers derived from these two Mediterranean shrubs were within the range of the results for those derived from wood pulp, opening the door to their valorization for cellulose-derived packing applications or for their use as reinforcers in composite materials in combination with other biopolymers.
Referències bibliogràfiques
- AFANAS’ EV, N.; PROKSHIN, G.; LICHUTINA, T.; GUSAKOVA, M.; VISHNYAKOVA, A.; SUKHOV, D.; DERKACHEVA, O.Y. 2007. Effect of residual lignin on the supramolecular structure of sulfate hardwood cellulose: a Fourier IR study. Russian Journal of Applied Chemistry 80(10): 1724-1727.
- AHTEE, M.; HATTULA, T.; MANGS, J.; PAAKKARI, T. 1983. An X-ray diffraction method for determination of crystallinity in wood pulp. Paperi Ja Puu 65(8): 475-480.
- AKHLAGHI, S.P.; BERRY, R.C.; TAM, K.C. 2013. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4): 1747-1764.
- BARBONI, T.; PELLIZZARO, G.; ARCA, B.; CHIARAMONTI, N.; DUCE, P. 2010. Analysis and origins of volatile organic compounds smoke from ligno-cellulosic fuels. Journal of Analytical and Applied Pyrolysis 89(1): 60-65.
- BENDAHOU, A.; HABIBI, Y.; KADDAMI, H.; DUFRESNE, A. 2009. Physico-chemical characterization of palm from Phoenix dactylifera L, Preparation of cellulose whiskers and natural rubber–based nanocomposites. Journal of Biobased Materials and Bioenergy 3(1): 81-90.
- BLEDZKI, A.; GASSAN, J. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24(2): 221-274.
- CARRIÓN-PRIETO, P.; HERNÁNDEZ-NAVARRO, S.; MARTÍN-RAMOS, P.; SÁNCHEZ-SASTRE, L.F.; GARRIDO-LAURNAGA, F.; MARCOS-ROBLES, J.L.; MARTÍN-GIL, J. 2017a. Mediterranean shrublands as carbon sinks for climate change mitigation: new root-to-shoot ratios. Carbon Management 8(1): 1-11.
- CARRIÓN-PRIETO, P.; MARTÍN-RAMOS, P.; HERNÁNDEZ-NAVARRO, S.; SÁNCHEZ-SASTRE, L.F.; MARCOS-ROBLES, J.L.; MARTÍN-GIL, J. 2017b. Valorization of Cistus ladanifer and Erica arborea shrubs for fuel: Wood and bark thermal characterization. Maderas-Cienc Tecnol 19(4): 443-454.
- CARRIÓN-PRIETO, P.; MARTÍN-RAMOS, P.; HERNÁNDEZ-NAVARRO, S.; SÁNCHEZ-SASTRE, L.F.; MARCOS-ROBLES, J.L.; MARTÍN-GIL, J. 2018. Furfural, 5-HMF, acid-soluble lignin and sugar contents in C. ladanifer and E. arborea lignocellulosic biomass hydrolysates obtained from microwave-assisted treatments in different solvents. Biomass and Bioenergy 119: 135-143.
- DA SILVA LACERDA, V.; LÓPEZ-SOTELO, J.B.; CORREA-GUIMARÃES, A.; HERNÁNDEZ-NAVARRO, S.; SÁNCHEZ-BASCONES, M.; NAVAS-GRACIA, L.M.; MARTÍN-RAMOS, P.; PÉREZ-LEBEÑA, E.; MARTÍN-GIL, J. 2015. A kinetic study on microwave-assisted conversion of cellulose and lignocellulosic waste into hydroxymethylfurfural/furfural. Bioresource Technology 180(0): 88-96.
- DANTE, R.C.; SÁNCHEZ-ARÉVALO, F.M.; HUERTA, L.; MARTÍN-RAMOS, P.; NAVAS-GRACIA, L.M.; MARTÍN-GIL, J. 2014. Composite Fiber Based on Sisal Fiber and Calcium Carbonate. Journal of Natural Fibers 11(2): 121-135.
- DE MESQUITA, J.P.; DONNICI, C.L.; PEREIRA, F.V. 2010. Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11(2): 473-480.
- EVANS, R.; NEWMAN, R.H.; ROICK, U.C.; SUCKLING, I.D.; WALLIS, A.F.A. 1995. Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung-49(6): 498-504.
- FAKIROV, S.; BHATTACHARYYA, D. 2007. Handbook of Engineering Biopolymers. München, Germany. Carl Hanser Verlag GmbH & Co. KG 933 pp. FRENCH, A.D.; SANTIAGO CINTRÓN, M. 2012. Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1): 583-588.
- GARVEY, C.J.; PARKER, I.H.; SIMON, G.P. 2005. On the Interpretation of X-Ray Diffraction Powder Patterns in Terms of the Nanostructure of Cellulose I Fibres. Macromolecular Chemistry and Physics 206(15): 1568-1575.
- HULT, K.; BERGLUND, P. 2003. Engineered enzymes for improved organic synthesis. Current Opinion in Biotechnology 14(4): 395-400. JU, X.; BOWDEN, M.; BROWN, E.E.; ZHANG, X. 2015. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydrate Polymers 123: 476-481.
- KAMIDE, K. 2005. Cellulose and cellulose derivatives: molecular characterization and its applications. Amsterdam. Elsevier. 652 pp.
- KLJUN, A.; BENIANS, T.A.S.; GOUBET, F.; MEULEWAETER, F.; KNOX, J.P.; BLACKBURN, R.S. 2011. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules 12(11): 4121-4126.
- LI, C.; ZHAO, Z.K.; CAI, H.; WANG, A.; ZHANG, T. 2011. Microwave-promoted conversion of concentrated fructose into 5-hydroxymethylfurfural in ionic liquids in the absence of catalysts. Biomass and Bioenergy 35(5): 2013-2017.
- MAPAMA. 2007. Spanish National Forest Inventory. [online] [cit.
- MATHIJSEN, D. 2016. Cellulose as reinforcing material for plastics: an alternative between talcum and glass fiber. Reinforced Plastics 60(3): 151-153. MORÁN, J.I.; ALVAREZ, V.A.; CYRAS, V.P.; VÁZQUEZ, A. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1): 149-159.
- MOYA PORTUGUÉZ, M.E.; DURÁN, M.; SIBAJA BALLESTEROS, M.R. 1992. Obtención de lignina y celulosa de residuos de maíz. Uniciencia 9(1): 45-50. MWAIKAMBO, L.Y.; ANSELL, M.P. 1999. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Die Angewandte Makromolekulare Chemie 272(1): 108-116.
- NÚÑEZ, C.E. 2008. Química de la madera. Celulosa Pulpa y Papel I. Misiones, Argentina. PROCYP, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones. pp. 57-65.
- O'CONNOR, R.T.; DUPRÉ, E.F.; MITCHAM, D. 1958. Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons Part I: physical and crystalline modifications and oxidation. Textile Research Journal 28(5): 382-392.
- OH, S.Y.; YOO, D.I.; SHIN, Y.; SEO, G. 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research 340(3): 417-428.
- PANDEY, K. 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science 71(12): 1969-1975.
- PARK, S.; BAKER, J.O.; HIMMEL, M.E.; PARILLA, P.A.; JOHNSON, D.K. 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3(1): 10.
- RAIMUNDO, J.R.; FRAZÃO, D.F.; DOMINGUES, J.L.; QUINTELA-SABARÍS, C.; DENTINHO, T.P.; ANJOS, O.; ALVES, M.; DELGADO, F. 2018. Neglected Mediterranean plant species are valuable resources: the example of Cistus ladanifer. Planta 248(6): 1351-1364.
- ROBERTS, G.A.F. 1991. Accessibility of cellulose. In Roberts, J.C. ed. Paper Chemistry. Dordrecht. Springer Netherlands. pp. 9-24.
- SCHLEICHER, H.; KUNZE, J.; LANG, H. 1991. Physico-chemical methods for the characterisation of cellulose reactivity. Wood Chemistry 2: 38-41.
- SEGAL, L.; CREELY, J.; MARTIN, A.; CONRAD, C. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10): 786-794.
- STEWART, C.M. 1969. The formation and chemical composition of hardwoods. Appita 22(4): R32.
- SUN, Y.; GUO, T.; SUI, Y.; LI, F. 2003. Quantitative determination of rutin, quercetin, and adenosine in Flos Carthami by capillary electrophoresis. Journal of Separation Science 26(12-13): 1203-1206.
- THOMSON REUTERS. 2014. The World in 2025: 10 predictions of innovation. ScienceWatch.com: Thomson Reuters IP & Science. 28 pp. [Available at] .
- THYGESEN, A.; ODDERSHEDE, J.; LILHOLT, H.; THOMSEN, A.B.; STÅHL, K. 2005. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6): 563.
- VEGA-BAUDRIT, J.; DELGADO-MONTERO, K.; SIBAJA-BALLESTERO, M.; ALVARADO-AGUILAR, P. 2007. Uso alternativo de la melaza de la caña de azúcar residual para la síntesis de espuma rígidas de poliuretano (ERP) de uso industrial. Tecnología, Ciencia, Educación 22(2): 101-107.
- WANG, Y.; CAO, X.; ZHANG, L. 2006. Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromolecular Bioscience 6(7): 524-531.
- ZHANG, Z.; ZHAO, Z. 2011. Production of 5-hydroxymethylfurfural from glucose catalyzed by hydroxyapatite supported chromium chloride. Bioresource Technology 102(4): 3970-3972.