Estrategias y errores de conversión entre representaciones de intervalos de la recta real

  1. Pecharromán Gómez, Cristina 1
  2. Arce Sánchez, Matías 1
  3. Conejo Garrote, Laura 1
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Journal:
Enseñanza de las ciencias: revista de investigación y experiencias didácticas

ISSN: 0212-4521 2174-6486

Year of publication: 2019

Volume: 37

Issue: 3

Pages: 169-187

Type: Article

DOI: 10.5565/REV/ENSCIENCIAS.2602 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Enseñanza de las ciencias: revista de investigación y experiencias didácticas

Sustainable development goals

Abstract

In this article, we present the results of an empirical study based on the concept of interval of the real line in which students of Grades 10 and 11 took part. Its objectives are to identify the strategies used by students to accomplish conversions among different representations of unbounded intervals, and to interpret possible mistakes and difficulties as derived from these strategies. Different strategies that focused on particular aspects are detected. Most of these difficulties are linked to the use of conversions as based on congruence. Finally, some didactical orientations to facilitate the learning of the interval concept via their representations are proposed.

Bibliographic References

  • Adu-Gyamfi, K. y Bossé, M. J. (2014). Processes and reasoning in representations of linear functions. International Journal of Science and Mathematics Education, 12(1), 167-192. https://doi.org/10.1007/s10763-013-9416-x
  • Arce, M., Conejo, L. y Ortega, T. (2016). ¿Cómo son los apuntes de matemáticas de un estudiante? Influencia de los elementos matemáticos y sus relaciones. Enseñanza de las Ciencias, 34(1), 149-172. https://doi.org/10.5565/rev/ensciencias.1706
  • Azcárate, C. y Camacho, M. (2003). Sobre la investigación en Didáctica del Análisis Matemático. Boletín de la Asociación Matemática Venezolana, 10(2), 135-149.
  • Berciano, A., Ortega, T. y Puerta, M. (2015). Aprendizajes de las interpolaciones gráficas y algebraicas. Análisis comparativo. Enseñanza de las Ciencias, 33(3), 43-58. https://doi.org/10.5565/rev/ensciencias.1454
  • Bossé, M. J., Adu-Gyamfi, K. y Cheetham, M. R. (2011). Assessing the difficulty of mathematical translations: synthesizing the literature and novel findings. International Electronic Journal of Mathematics Education, 6(3), 113-133.
  • Castro, E. y Castro, E. (1997). Representaciones y Modelización. En L. Rico (Coord.), La Educación Matemática en la Enseñanza Secundaria (pp. 95-124). Barcelona: ICE-Horsori.
  • Clement, J. J. (1982). Algebra word problem solutions: Thought processes underlying a common misconception. Journal for Research in Mathematics Education, 13(1), 16-30.
  • De Bock, D., Van Dooren, W. y Verschaffel, L. (2015). Students’ understanding of proportional, inverse proportional, and affine functions: two studies on the role of external representations. International Journal of Science and Mathematics Education, 13(Supplement 1), 47-69. https://doi.org/10.1007 %2Fs10763-013-9475-z
  • Duval, R. (1999). Semiosis y pensamiento humano: registros semióticos y aprendizajes intelectuales. Cali: Universidad del Valle.
  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of Mathematics. Educational Studies in Mathematics, 61(1-2), 103-131. https://doi.org/10.1007/s10649-006-0400-z
  • Elia, I., Panaoura, A., Eracleous, A. y Gagatsis, A. (2007). Relations between secondary pupils’ conceptions about functions and problem solving in different representations. International Journal of Science and Mathematics Education, 5(3), 533-556. https://doi.org/10.1007/s10763-006-9054-7
  • Elliot, J. (1990). La investigación-acción en Educación. Madrid: Morata.
  • Goldin, G. (2002). Representation in mathematical learning and problem solving. En L. D. English (Ed.), Handbook of International Research in Mathematics Education (pp. 197-218). Mahwah, NJ: Lawrence Erlbaum Associates.
  • González-Calero, J. A., Arnau, D. y Laserna-Belenguer, B. (2015). Influence of additive and multiplicative structure and direction of comparison on the reversal error. Educational Studies in Mathematics, 89(1), 133-147. https://doi.org/10.1007/s10649-015-9596-0
  • Janvier, C. (ed.) (1987). Problems of Representations in the Teaching and Learning of Mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Kemmis, S. y McTaggart, T. (1988). Cómo planificar la investigación-acción. Barcelona: Laertes.
  • Leinhardt, G., Zaslavsky, O. y Stein, M. K. (1990). Functions, graphs, and graphing: tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
  • Ministerio de Educación, Cultura y Deporte (2015). Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato. Boletín Oficial del Estado del 3 de enero de 2015 (169-546). Madrid: Gobierno de España.
  • NCTM (2000). Principles and standards for School Mathematics. Reston, VA: Autor.
  • Pecharromán, C. (2013). Naturaleza de los objetos matemáticos: representación y significado. Enseñanza de las Ciencias, 31(3), 121-134. https://doi.org/10.5565/rev/ec/v31n3.931
  • Pecharromán, C., Arce, M., Conejo, L. y Ortega, T. (2018). Metodología teórica para analizar la congruencia entre representaciones de objetos matemáticos: el caso de los intervalos no acotados de la recta real. Educación Matemática, 30(3), 184-210. https://doi.org/10.24844/EM3003.08
  • Rico, L. (1998). Errores y dificultades en el aprendizaje de las matemáticas. En J. Kilpatrick, P. Gómez y L. Rico (Eds.), Educación Matemática. Errores y dificultades de los estudiantes. Resolución de problemas. Evaluación. Historia (pp. 69-108). Bogotá: Una Empresa Docente.
  • Rico, L. (2009). Sobre las nociones de representación y comprensión en la investigación en educación matemática. PNA, 4(1), 1-14.
  • Stylianou, D. A. (2011). An examination of middle school students’ representation practices in mathematical problem solving through the lens of expert work: towards an organizing scheme. Educational Studies in Mathematics, 76(3), 265-280. https://doi.org/10.1007/s10649-010-9273-2
  • Tall, D. y Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169. https://doi.org/10.1007/BF00305619
  • Turner, R., Blum, W. y Niss, M. (2015). Using competencies to explain mathematical item demand: a work in progress. En K. Stacey y R. Turner (Eds.), Assessing Mathematical Literacy. The PISA experience (pp. 85-115). Cham, Suiza: Springer. https://doi.org/10.1007/978-3-319-10121-7