Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones
- C. Gutiérrez 1
- L. Huerga 2
- B. Jiménez 2
- V. Novo 2
- 1 Universidad de Valladolid, España
- 2 Universidad Nacional de Educación a Distancia, España
ISSN: 1863-8279, 1134-5764
Year of publication: 2020
Volume: 28
Issue: 2
Pages: 526-544
Type: Article
More publications in: Top
Abstract
In this paper, we provide optimality conditions for approximate proper solutions of a multiobjective optimization problem, whose feasible set is given by a cone constraint and the ordering cone is polyhedral. A first class of optimality conditions is given by means of a nonlinear scalar Lagrangian and the second kind through a linear scalarization technique, under generalized convexity hypotheses, that lets us derive a Kuhn–Tucker multiplier rule.
Funding information
Funders
-
Ministerio de Ciencia, Innovación y Universidades
- PGC2018-096899-B-I00
- PGC2018-096899-B-I00