Hexavalent chromium-reducing bacteria on biosolids from the San Fernando Wastewater Treatment Plant in Medellín (Colombia)

  1. Juan A. Vélez 1
  2. Luisa F. Quiroz 1
  3. Orlando S. Ruiz 1
  4. Olga I. Montoya 1
  5. María-Belén Turrión 1
  6. Sergio Ordúz 1
  1. 1 Universidad Nacional de Colombia
    info

    Universidad Nacional de Colombia

    Bogotá, Colombia

    ROR https://ror.org/059yx9a68

Journal:
Revista Colombiana de Biotecnología

ISSN: 1909-8758 0123-3475

Year of publication: 2021

Volume: 23

Issue: 1

Pages: 32-45

Type: Article

DOI: 10.15446/REV.COLOMB.BIOTE.V23N1.94005 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Revista Colombiana de Biotecnología

Abstract

ABSTRACT During the most recent decades, advances have been made to reduce the environmental impact by anthropogenic activities that constantly release toxic components into the environment, generating instability and damage to the health of biological communities. Among the different pollutants, heavy metals are important by virtue of their properties, which hinder their degradation or transformation into other less toxic compounds. Chromium is one of the metals of greatest global interest due to its use in multiple industries. Conventional methods using chromed materials in their processes, not only throw considerable amounts of waste into the environment, but also give little account of the fraction of hexavalent chromium (Cr6+) present in certain ecosystems. Bioremediation has been proposed as an economically viable and environmentally sustainable alternative. This work aimed to evaluate the chromium reduction capacity by bacteria isolated from a biosolids matrix obtained at the San Fernando Wastewater Treatment Plant (WWTP), located in Medellín (Colombia). Biosolids samples were grown in a nutrient agar enriched with different concentrations of Cr6+. The strains presenting the greater tolerance to chromium were isolated to perform reduction tests by triplicate, monitoring the concentration of the metal over time. Seven different bacterial species were obtained, among which Staphylococcus saprophyticus, Ochrobactrum anthropic, and Bacillus cereus showed the greatest ability to reduce Cr6+ (29.0%, 61.1 and 100%, at 96 h) respectively.

Bibliographic References

  • Alekhya, C.,Subbaiah, M.. (2016). Removal of chromium by Staphylococcus saprophyticus subsp. bovis strain 1. Biologija. 62. 1-8
  • Banerjee, A.,Ghoshal, A.. (2016). Biodegradation of phenol by calcium-alginate immobilized Bacillus cereus in a packed bed reactor and determination of the mass transfer correlation. Journal of Environmental Chemical Engineering. 4. 1523
  • Benila, J.,Sumithra, P.. (2017). Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. HAYATI Journal of Biosciences. 24. 65-71
  • Chacon, L.. (2014). Prueba de shapirowilk para probar normalidad de Luis Chacon Montalvan.
  • Cheng, Y.,Yan, F.,Huang, F.,Chu, W.,Pan, D.,Chen, Z.,Wu, Z.. (2010). Bioremediation of Cr (VI ) and Immobilization as Cr ( III ) by Ochrobactrum anthropic. Environmental Science & Technology. 44. 6357
  • Chudasama, K.,Thaker, V. S.. (2017). Genome sequence of Ochrobactrum anthropi strain SUBG007, a plant pathogen and potential xenobiotic compounds degradation bacterium. Genomics Data. 11. 116
  • Eastmond, D.,MacGregor, J.,Slesinski, R.. (2008). Triva-lent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Critical Reviews in Toxicology. 38. 173
  • Elabbas, S.,Mandi, L.,Berrekhis, F.,Noelle, M.,Pierre, J.,Ouazzani, N.. (2016). Removal of Cr (III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble. Journal of Environmental Management. 166. 589
  • Fernández, P.,Viñarta, S.,Bernal, A.,Cruz, E.,Figueroa., L. (2018). Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere. 208. 139148
  • Francisco, R.,Alpoim, M. C. V.,Morais, P. V.. (2002). Diversity of chromium-resistant and -reducing bacteria in a chromium- contaminated activated sludge. Journal of applied Microbiology. 92. 837
  • Glick, B.,Pastemak, J.. (1985). Molecular Biotechnology. 34. ASM press.
  • Gutiérrez, J.,Espino, Á.,Coreño, A.,Acevedo, F.,Reyna, G.,Fernández, F.,Wrobel, K.. (2010). Mecanismos de interacción con cromo y aplicaciones biotecnológicas en hongos. Revista Latinoamericana de Biotecnología Amb Algal. 1. 47-63
  • Haviari, S.,Cassier, P.,Dananché, C.,Hulin, M.,Dauwalder, O.,Rouvière, O.,Vanhems, P.. (2016). Outbreak of Achromobacter xylosoxidans and Ochrobactrum anthropi infections after prostate biopsies, France, 2014. Emerging Infectious Diseases. 22. 1412
  • Henderson, A.,See, G.,O'Donohoe, T.,Aye, C.,Parsonson, F.,Engler, C.,Norton, R.. (2016). Misidentification of Brucella suis as Ochrobactrum anthropi in a Patient with Septic Arthritis. Clinical Microbiology Newsletter. 38. 66
  • Higdon, J.,Drake, V.,Delage, B.. (2003). Centro de Información de Micronutrientes: Cromo. Linus Pauling Institute Oregon State University.
  • Horel, S.. (2017). Cáncer profesional: sólo 18 sustancias reguladas. Portal Libertario OACA.
  • Ibrahim, H.. (2011). Characterization of biosurfactants produced by novel strains of Ochrobactrum an-thropi HM-1 and Citrobacter freundii HM-2 from used engine oil-contaminated soil. Egyptia Journal of Petroleum. 6. 1-19
  • Ilhan, S.,Nourbakhsh, M.,Kiliçarslan, S.,Ozdag, H.. (2004). Removal of chromium, lead and copper ions from industrial waste waters by Staphylococcus saprophyticus. Turkish Electronic journal Biotechnol. 2. 50
  • Iranzo, M.,Gamón, M.,Boluda, R.,Mormeneo, S.. (2018). Analysis of pharmaceutical biodegradation of WWTP sludge using composting and identification of certain microorganisms involved in the process. Science of the Total Environment. 640641. 840
  • Jobby, R.,Jha, P.,Yadav, A.,Desai, N.. (2018). Biosorption and biotransformation of hexavalent chromium Cr(VI): A comprehensive review. Chemosphere. 207. 255
  • Martínez, M.. (2009). Aislamiento de cepas nativas bacterianas a partir de biopelícula obtenida de un sitio de vertimiento de aguas residuales con alto contenido de cromo. Universidad Nacional de Colombia. Medellín.
  • Mellado, J.. (2013). Homogeneidad de Varianzas Prueba de Bartlett.
  • (2014). Ministerio de Vivienda Ciudad y Territorio. Decreto 1287 de julio 10 de 2014.
  • Mora, A.. (2016). Bacillus sp. G3 un microorganismo promisorio en la biorremediación de aguas industriales contaminadas con cromo hexavalente. Nova Scientia. 8. 361
  • Nayak, P.. (2017). Containing contamination: Trees, fungi and bacteria to the rescue. Current Science. 112. 447
  • (2012). Pacific Northwest National Laboratory. Situ Bioremediation.
  • Pan, X.,Liu, Z.,Chen, Z.,Cheng, Y.,Pan, D.,Shao, J.,Lin, Z.,Guan, X.. (2014). Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Research. 55. 21
  • Qian, J.,Zhou, J.,Wang, L.,Wei, L.,Li, Q.,Wang, D.,Wang, Q.. (2017). Direct Cr(VI) bio-reduction with organics as electron donor by anaerobic sludge. Chemical Engineering Journal. 309. 330
  • (2017). R-core team "R-student.". Softward.
  • Rivera, E.,Cárdenas, J.,Martínez, V.,Acosta, I.. (2015). Remoción de cromo (VI) por una cepa de Aspergillus niger resistente a cromato. Información Tecnológica. 26. 13-20
  • Sánchez, J.,Correa, M.,Castañeda, L.. (2016). Bacillus cereus un patógeno importante en el control microbiológico de los alimentos. Revista Facultad Nacional de Salud Pública. 34. 230
  • Singh, N.,Gaur, R.. (2013). Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. African Journal of Biotechnology. 12. 1091-11103
  • Sokal, R.,Rohlf, F.. (1995). Biometry: the principles and practice of statistics in biological sciences. WH Free Company. New Yorkk.
  • Soto, C.,Gutiérrez, S.,Rey, A.,González, E.. (2010). Biotransformación de metales pesados presentes en lodos ribereños de los ríos Bogotá y Tunjuelo. Nova. 1. 195-205
  • Tahri, N.,Sayel, H.,Bahafid, W.,El Ghachtouli, N.. (2011). Mechanisms of hexavalent chromium resistance and removal by microorganisms. Reviews of Environmental Contamination and Toxicology. 211. 25-61
  • Trois, C.,Coulon, F.,De Combret, C.,Martins, J.,Oxarango, L.. (2010). Effect of pine bark and compost on the biological denitrification process of nonhazardous landfill leachate: Focus on the microbiology. Journal of Hazardous Materials. 181. 1163
  • (1992). US EPA Test Method 7196A: Chromium, Hexavalent (Colorimetric). MOSWER, ORCR, SW-846.
  • (1992). US-EPA. Methods for the Detection of Microorganisms in the Environment NEPIS. 128
  • Vargas, M.,López, M.,Suárez, F.,Moreno, J.. (2012). Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection. Science of the Total Environment. 43. 6267
  • Wang, Y.,Peng, B.,Yang, Z.,Chai, L.,Liao, Q.,Zhang, Z.,Li, C.. (2014). Bacterial community dynamics during bioremediation of Cr(VI)-contaminated soil. Applied Soil Ecology. 85. 50
  • Wise, S.,Wise, J.. (2012). Chromium and genomic stability. Fundamental and Molecular Mechanisms of Mutagenesis Mutagen. Mutation Research. 733. 78-82
  • Xu, Z.,Li, D.,Tan, Y.,Yang, Q.,Xiong, H.,Li, J.,Deng, H.,... Lin, Z.. (2021). Investigation on the treatment of Cr (VI ) by Bacillus cereus 12-2 under metal cation. Surfaces and Interfaces.