Evaluation of the use of low-cost GPS receivers in the autonomous guidance of agricultural tractors

  1. Alonso-García, S.
  2. Gómez Gil, Jaime
  3. Arribas, J. I.
Revista:
Spanish journal of agricultural research

ISSN: 1695-971X 2171-9292

Año de publicación: 2011

Volumen: 9

Número: 2

Páginas: 377-388

Tipo: Artículo

DOI: 10.5424/SJAR/20110902-088-10 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Spanish journal of agricultural research

Resumen

Este artículo evalúa el uso de receptores de posicionamiento global (GPS) de bajo coste en el guiado autónomo de tractores agrícolas. Para ello, se instaló un sistema de guiado autónomo en un tractor John Deere 6400. Como sensor de posicionamiento se utilizó un único receptor GPS de bajo coste. Se implementaron tres leyes de control diferentes para la evaluación del guiado con el receptor GPS de bajo coste. Se realizaron pruebas de seguimiento de trayectorias rectilíneas y de respuesta escalón. El error de guiado total se obtuvo de la precisión del receptor y del error relativo instantáneo en el seguimiento de una trayectoria. Para la evaluación de la precisión del receptor, se tomaron y analizaron datos de posición de varios receptores. Para la evaluación del error en el guiado, se realizaron pruebas con cada una de las leyes de control a tres velocidades diferentes. Como conclusiones se ha obtenido que la precisión relativa de los receptores GPS de bajo coste disminuye con el tiempo; que en un intervalo de tiempo inferior a 15 min, la precisión relativa es aproximadamente 1 m; que el comportamiento de las diferentes leyes de control es similar y está condicionado por el ajuste de las mismas; que el guiado es posible a velocidades de hasta 9 km h�1 y, finalmente, que el error total en el guiado está principalmente determinado por la precisión del receptor.

Referencias bibliográficas

  • Ashraf M.A., Takeda J., Osada H., Chiba S., 2003. Generalised steering strategy for vehicle navigation on sloping ground. Biosyst Eng 86, 3, 267-273. http://dx.doi.org/10.1016/S1537-5110(03)00140-5
  • Auernhammer H., 2001. Precision farming – the environmental challenge. Comput Electron Agric 30(1-3), 31-43. http://dx.doi.org/10.1016/S0168-1699(00)00153-8
  • August P., Michaud J., Lavash C., Smith C., 1994. GPS for environmental applications: accuracy and precision of locational data. Photogramm Eng Remote Sens 60(1), 41-45.
  • Benner P., Faßbender H., 1999. Slicot drives tractors. Research results of the European Community BRITE_EURAM III Thematic Networks Programme NICONET. Available in http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6815&rep=rep1&type=ps. [5 May 2011].
  • Benson E.R., Reid J.F., Zhang Q., 2003. Machine vision-based guidance system for an agricultural smallgrain harvester. T ASABE 46(4), 1255-1264.
  • Billingsley J., Schoenfisch M., 1997. The successful development of a vision guidance system for agriculture. Comput Electron Agric 16(2), 147-163. http://dx.doi.org/10.1016/S0168-1699(96)00034-8
  • Blochl B., Tsinas L., 1994. Automatic road following using fuzzy control. Control Eng Pract 2(2), 305-311. http://dx.doi.org/10.1016/0967-0661(94)90212-7
  • Borgelt S.C., Harrison J.D., Sudduth K.A., Birrell S.T., 1996, Evaluation of GPS for applications in precision agriculture. Appl Eng Agric 12(6), 633-638.
  • Busse W., Coenenberg H., Feldman F., Crusinberry T.F., 1977. The first serial produced automatic steering system for corn combines and forage harvesters. Proc Int Grain and Forage Harvesting Conf, Ames, IA (USA). pp. 43-47.
  • Czajewski J., 2004. The accuracy of the global positioning systems. IEEE Instrum Meas Mag 40, 56-60.
  • Cordesses L., Cariou C., Martinet P., Thibaud C., 1999. CP-DGPS based combine harvester without orientation sensor. Int Conf of the Institute of Navigation, ION-GPS'99, Nashville, USA. pp. 2041-2046.
  • DAF, 2008. Interface specification IS-GPS-800. Navstar GPS Space Segment/User Segment L1C interfaces. Department of the Air Force, Science Applications International Corporation, California.
  • Devlin G.J., Mcdonnell K.P., Ward S.M., 2007. Performance accuracy of low cost dynamic non-differential GPS on articulated trucks. Appl Eng Agric 23(3), 273-279.
  • DMA, 1989. DMATM 8358.2, the universal grids: universal transverse mercator (UTM) and the universal polar stereographic (UPS). Defense Mapping Agency, Washington.
  • Ferrero S., Pierozzi M., Repetti L., Surace L., 2009. An algorithm for the unambiguous determination of the equidistant boundary line between two (or more) coastlines. Appl Geomat 1(3), 49-58. http://dx.doi.org/10.1007/s12518-009-0007-z
  • Gan-Mor S., Clark R.L., Upchurch B.L., 2007. Implement lateral position accuracy under RTK-GPS tractor guidance. Comput Electron Agric 59(1-2), 31-38. http://dx.doi.org/10.1016/j.compag.2007.04.008
  • García-Pérez L., García-Alegre M.C., Ribeiro A., Guinea D., 2008. An agent of behaviour architecture for unmanned control of a farming vehicle. Comput Electron Agric 60(1), 39-48. http://dx.doi.org/10.1016/j.compag.2007.06.004
  • Gerrish J.B., Fehr B.W., Van EE G.R., Welch D.P., 1997. Self-steering tractor guided by computer-vision. Appl Eng Agric 13(5), 559-563.
  • Guo L.S., Zhang Q., 2004. A low-cost navigation system for autonomous off-road vehicles. Proc Automation Technology for Off-road Equipment Conf. ASABE, 701P1004.107-119.
  • ISO, 2008. ISO/DIS 12188-1 test procedures for positioning and guidance systems in agriculture. Part I: Dynamic testing of satellite-based positioning devices. International Organization for Standardization.
  • ISO, 2009. ISO/WD 12188-1, tractors and machinery for agriculture and forestry. Testing procedures for positioning and guidance systems in agriculture. Part II: Satellite- based auto-guidance systems tested during straight and level travel. International Organization for Standardization.
  • Keicher R., Seufert H., 1999. Automatic guidance for agricultural vehicles in Europe. Comput Electron Agric 25(1-2), 169-194. http://dx.doi.org/10.1016/S0168-1699(99)00062-9
  • Keskin M., Say S.M., 2006. Feasibility of low cost GPS receivers for ground speed measurement. Comput Electron Agric 54, 36-43. http://dx.doi.org/10.1016/j.compag.2006.07.001
  • Kirk T.G., Zoerb G.C., Wilson J.N., 1976. A furrow-following tractor guidance system. Proc ASABE Annual International Meeting, St Joseph, MI, USA. Paper No. 76-001.
  • Leemans V., Destain M.F., 2007. A computer-vision based precision seed drill guidance assistance. Comput Electron Agric 59(1-2), 1-12. http://dx.doi.org/10.1016/j.compag.2007.04.003
  • Lenain R., Thuillot B., Cariou C., Martinet P., 2006. High accuracy path tracking for vehicles in presence of sliding: application to farm vehicle automatic guidance for agricultural tasks. Auton Robot 21, 79-97. http://dx.doi.org/10.1007/s10514-006-7806-4
  • MARTIN-ASIN F., 1983. Geodesia y cartografía matemática, 3ª ed. Ed Paraninfo, Madrid. [In Spanish]
  • Noguchi N., Reid J.F., Will J., Benson E.R., 1998. Vehicle automation systems based on multi-sensor integration. Proc ASABE Annual International Meeting. St Joseph, MI, USA. Paper No. 983111.
  • O'Connor M., Bell T., Elkaim G., Parkinson B., 1996. Automatic steering of farm vehicles using GPS. III Int Conf Precision Agriculture, Minneapolis, MN, USA.
  • Parish R.L., Goering C.E., 1970. Developing an automatic steering system for a hydrostatic vehicle. T ASABE, 523-527.
  • Peters R.T., Evett S.R., 2005. Using low cost GPS receivers for determining field position of mechanized irrigation systems. Appl Eng Agric 21(5), 841-845.
  • Price R.R., Nistala G., 2005. Development of an inexpensive autonomous guidance system. Proc ASABE Annual International Meeting. Paper No. 051139.
  • Reid J.F., Zhang Q., Noguchi N., Dickson M., 2000. Agricultural automatic guidance research in North America. Comput Electron Agric 25(1-2), 155-167. http://dx.doi.org/10.1016/S0168-1699(99)00061-7
  • Slaughter D.C., Giles D.K., Downey D., 2008. Autonomous robotic weed control systems: a review. Comput Electron Agric 61(1), 63-78. http://dx.doi.org/10.1016/j.compag.2007.05.008
  • Stafford J.V., 1999. GPS in agriculture – A growing market! J Navig 52(1), 60-69. http://dx.doi.org/10.1017/S0373463398008108
  • Steinz A., Dima C., Wellington C., Herman H., Stager D., 2002. A system for semi-autonomous tractor operations. Auton Robot 13, 87-104. http://dx.doi.org/10.1023/A:1015634322857
  • Stoll A., Kutzbach H.D., 2000. Guidance of a forage harvester with GPS. Prec Agric 2, 281-291. http://dx.doi.org/10.1023/A:1011842907397
  • Stombaugh T.S., Benson E.R., Hummel J.W., 1999. Guidance control of agricultural vehicles at high field speeds. T ASABE 42(2), 537-544.
  • Subramanian V., Burks T.F., Arroyo A.A., 2006. Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation. Comput Electron Agric 53, 130-143. http://dx.doi.org/10.1016/j.compag.2006.06.001
  • Thuillot B., Cariou C., Martinet P., Berducat M., 2002. Automatic guidance of a farm tractor relying on a single CP-DGPS. Auton Robot 13(1), 53-71. http://dx.doi.org/10.1023/A:1015678121948
  • Valbuena R., Mauro F., Rodríguez-Solano R., Manzanera J.A., 2010. Accuracy and precision of GPS receivers under forest canopies in a mountain environment. Span J Agric Res 8(4), 1047-1057.
  • Wilson J.N., 2000. Guidance of agricultural vehicles – a historical perspective. Comput Electron Agric 25(1-2), 3-9. http://dx.doi.org/10.1016/S0168-1699(99)00052-6
  • Wu D., Zang Q., Reid J.F., Qiu H., Benson E. R., 1999. Adaptative control of electrohidraulic steering system for wheel-type agricultural tractors. Proc ASABE Annual International Meeting, Toronto, Ontario, Canada. Paper No. 993079.
  • Zhang N.Q., Wang M.H., Wang N., 2002. Precision agriculture-a worldwide overview. Comput Electron Agric 36, 113-132. http://dx.doi.org/10.1016/S0168-1699(02)00096-0
  • Zhang Y., Chung J.H., Velinsky S.A., 2003. Variable structure control of a differentially steered wheeled mobile robot. J Intell Robot Syst 36(3), 301-314. http://dx.doi.org/10.1023/A:1023049307170
  • Zhu Z.X., Torisu R., Takeda J.I., Mao E.R., Zhang Q., 2005. Neural networks for estimating vehicle behaviour on sloping terrain. Biosyst Eng 91(4), 403-411. http://dx.doi.org/10.1016/j.biosystemseng.2005.05.003