Infiltración y grupos hidrológicos de suelos en las laderas de los páramos (Valladolid)

  1. Mongil Manso, Jorge 1
  2. Navarro Hevia, Joaquín 2
  1. 1 Universidad Católica Santa Teresa de Jesús de Ávila
    info

    Universidad Católica Santa Teresa de Jesús de Ávila

    Ávila, España

    ROR https://ror.org/05wa62164

  2. 2 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters

ISSN: 0211-6820 1697-9540

Año de publicación: 2012

Volumen: 38

Número: 1

Páginas: 131-153

Tipo: Artículo

DOI: 10.18172/CIG.1279 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

We show the results of three soil infiltration tests that were made in the slopes under the typical limestone moors of the Valladolid Province (Spain). Soils tested have evolved from Tertiary grey silts and clays generating clayey to loamy textures. Vegetation on these soils is a Pinus halepensis forest from reforestation and two Mediterranean brush degraded covers. Horton infiltration model has been adjusted using data from the trials. Soil hydrologic groups from runoff Curve Number model have been also determined for every soil tested. Finally, soil infiltration conditions are moderate for everyone, but much better in the pine forest than in the others. Final infiltration rate is medium to-low. Soils belong to C and D Hydrologic Soil Groups according to their texture, saturated hydraulic conductivity and minimum infiltration rate, although pine forest shows a certain group B quality. These results would allow better approach for the Hydrologic Soil Groups proposed by the Curve Number Method for using them in simulation hydrologic models to estimate floods and land-use planning or to estimate design flows of fluvial infrastructures in river basins with similar lands to those studied here. © Universidad de La Rioja.

Referencias bibliográficas

  • ALAOUI, A., CADUFF, U., GERKE, H. H., WEINGARTNER, R. (2011). Preferential flow effects on infiltration and runoff in grassland and forest soils. Vadose Zone Journal, 10 (1): 367-377.
  • AL-AZAWI, S. A. (1985). Experimental evaluation of infiltration models. Journal of Hydrology (NZ), 24 (2): 77-88.
  • BENS, O., WAHL, N. A., FISCHER, H., HUTTL, R. F. (2007). Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties. European Journal of Forest Research, 126 (1): 101-109.
  • BLANCO, R. (1999). El infiltrómetro de cilindro simple como método de cálculo de la conductividad hidráulica de los suelos. Experiencias de campo en ámbitos de montaña mediterránea. Baetica. Estudios de Arte. Geografía e Historia, 21: 9-33.
  • BONELL, M., PURANDARA, B. K., VENKATESH, B., KRISHNASWAMY, J., ACHARYA H. A. K., SINGH, U. V., JAYAKUMAR, R., CHAPPELL, N. (2010). The impact of forest use and reforestation on soil hydraulic conductivity in the Western Ghats of India: implications for surface and sub-surface hydrology. Journal of Hydrology, 391(1-2): 49-64.
  • BOUWER, H. (1966). Rapid field measurement of air-entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resources Research, 2: 729-738.
  • BRAKENSIEK, D. L., OSBORN, K. B., RAWLS, W. J. (1979a). Field manual for research in agricultural Hydrology. Agriculture Handbook, 224.
  • BRAKENSIEK, D. L., RAWLS, W. J. (1983). Green-Ampt infiltration model parameters for hydrologic classification of soils. En: Advances in irrigation and drainage, surviving external pressures (Borelli, J., Hasfurther, V., Burman, D., Eds.). Proceedings of American Society of Civil Engineers specialty conference (Jackson, WY). Amer. Soc. Civ., New York.
  • BRAKENSIEK, D. L., RAWLS, W. J., HAMON, W. R. (1979b). Aplication of an infiltrometer system for describing infiltration into soils. Transactions of the ASAE, 22: 320-333.
  • BUCZKO, U., BENS, O., HUTTL, R. F. (2006). Water infiltration and hydrophobicity in forest soils of a pine-beech transformation chronosequence. Journal of Hydrology, 331(3-4): 383-395.
  • CAMMERAAT, E. L. H., CERDÀ, A., IMESON, A. C. (2010). Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrol. DOI: 10.1002/eco.161.
  • CEBALLOS, A., MARTÍNEZ-FERNÁNDEZ, J., SANTOS, F., ALONSO, P. (2002). Soil-water behaviour of sandy soils under semi-arid conditions in the Duero Basin (Spain). Journal of Arid Environments, 51: 501-519
  • CERDÀ, A. (1995). Factores y variaciones espacio-temporales de la infiltración en los ecosistemas mediterráneos. Monografías científicas nº 5. Geoforma Ediciones, Logroño.
  • CERDÀ, A. (1997). Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology, 198: 209-225.
  • CERDÀ, A. (1998). Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrol. Process., 12: 1031-1042.
  • CERDÀ, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52: 59-68.
  • CERDÀ, A., DOERR, S. H. (2007). Soil wettability, runoff and erodibility of major dryMediterranean land use types on calcareous soils. Hydrol. Process., 21: 2325-2336.
  • CERDÀ, A., IMESON, A. C., CALVO, A. (1995). Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, southeast Spain. Catena, 24: 289-304.
  • CHANG, M. (2006). Forest Hydrology. An introduction to water and forests. Taylor and Francis Group, Boca Ratón.
  • CLARKE, M. A., WALSH, R. P. D. (2007). A portable rainfall simulator for field assessment of splash and slopewash in remote locations. Earth Surf. Process. Landforms, 32: 2052-2069.
  • COLLIS-GEORGE, N. (1977). Infiltration equation for simple soils systems. Water Resources Research, 13: 395-403.
  • FAO (2006). World Reference Base for soil resources 2006. A framework for international classification, correlation and communication. World Soil Resources Report 103. Food and Agriculture Organization of the United Nations, Rome.
  • FERNÁNDEZ DE VILLARÁN, R. (2006). Mejora de los parámetros de cálculo del modelo del número de curva y su validación mediante un modelo hidrológico distribuido. Tesis doctoral. Universidad de Huelva, Huelva.
  • FERRER-JULIÀ, M. (2003). Análisis de nuevas fuentes de datos para la estimación del parámetro número de curva: perfiles de suelos y teledetección. Cuadernos de Investigación. CEDEX, Madrid.
  • FITZGERALD, P. D., COSSENS, G. G., RICKARD, D. S. (1971). Infiltration and soil physical properties. Journal of Hydrology (NZ), 10 (2): 120-126.
  • GREEN, W. H., AMPT, C. A. (1911). Studies on soil physics, I. Flow of air and water through soils. Journal of Agricultural Sciences, 4: 1-24.
  • HAAN, C. J., JOHNSON, H. P., BRAKENSIEK, D. L. (1982). Hydrologic modeling of small watersheds. American Society of Agricultural Engineers, pp. 139-155.
  • HARVEY, A. M. (1982). The role of piping in the development of badlands and gully systems in south-east Spain. En: Badland geomorphology and piping (Bryan, R., Yair, A., Eds.). University Press, Cambridge.
  • HAWKINS, R. H., WARD, T., WOODWARD, D. E., VAN MULLEM, J. A. (2009). Curve Number Hydrology. State of the practice. ASCE, Reston.
  • HEWLETT, J. D. (1982). Principles of forest Hydrology. The University of Georgia Press, Athens.
  • HILLEL, D. (1971). Soil and water: physical principles and processes. Academic Press, New York.
  • HILLEL, D. (1980). Fundamentals of soil physics. Academic Press, London.
  • HJELMFELT, A. T., WOODWARD, D. A., CONAWAY, G., QUAN, Q. D., VAN MULLEM, J., HAWKINS, R. H. (2001). Curve Numbers, Recent Developments. XXIX IAHR Congress Proceedings, Beijing, China.
  • HOLTAN, H. N. (1961). A concept of infiltration estimates in watershed engineering. Agricultural Research Service Paper, pp. 41-51, Washington.
  • HORTON, R. E. (1937). Determination of infiltration capacity for large drainage basins. Trans. Am. Geophys. Union, 18: 371-385.
  • HORTON, R. E. (1940). An approach toward a physical interpretation of infiltration capacity. Soil Science Society of America Proceedings, 5: 399-417.
  • HUANG, Z. G., OUYANG, Z. Y., LI, F. R., ZHENG, H., WANG, X. K. (2010). Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China. Journal of Environmental Sciences-China, 22 (11): 1765-1773.
  • ILSTEDT, U., MALMER, A., ELKE, V., MURDIYARSO, D. (2007). The effect of afforestation on water infiltration in the tropics: a systematic review and meta-analysis. Forest Ecology and Management, 251 (1-2): 45-51.
  • LÓPEZ CADENAS, F. (dir.) (1998). Restauración hidrológico forestal de cuencas y control de la erosión. Ed. Mundi-Prensa, Tragsa, Tragsatec, Madrid.
  • LÓPEZ CADENAS, F., MINTEGUI, J. A. (1986). Hidrología de superficie. Tomo I. Fundación Conde del Valle de Salazar, Madrid.
  • MADRID, A., FERNALD, A. G., BAKER, T. T., VAN LEEUWEN, D. M. (2006). Evaluation of silvicultural treatment effects on infiltration, runoff, sediment yield, and soil moisture in a mixed conifer New México forest. Journal of Soil and Water Conservation, 61 (3): 159-168.
  • MARTÍNEZ DE AZAGRA, A., NAVARRO, J. (1996). Hidrología forestal. El ciclo hidrológico. Servicio de Publicaciones de la Universidad de Valladolid, Valladolid.
  • MARTÍNEZ DE AZAGRA, A., PANDO, V., NAVARRO, J., DEL RÍO, J. (2006a). Aproximación al conocimiento de la infiltración a través del análisis dimensional. Ecología, 20: 453-470.
  • MARTÍNEZ DE AZAGRA, A., PANDO, V., NAVARRO, J., DEL RÍO, J. (2006b). A proposal of an infiltration function with ecological meaning. International Meeting Managing Forest Ecosystems: The Challenges of Climate Change. IUFRO.
  • MOLINA, D. M. (1993). Efectos del fuego controlado en la velocidad de infiltración del agua en suelos forestales: un caso de estudio en la costa norte de California. Invest. Agrar. Sist. Recur. For., 2 (2): 173-184.
  • MOPT (1992). Guía para la elaboración de estudios del medio físico. Contenido y metodología. Ministerio de Obras Públicas y Transportes, Madrid.
  • MOPU (1990). Instrucción 5.2-I.C. Drenaje superficial. Dirección General de Carreteras. Ministerio de Obras Públicas y Urbanismo, Madrid.
  • MUSGRAVE, G. W. (1955). How much rain enters the soil. Water: the yearbook of agriculture 1955.
  • NEARING, M. A., LIU, B., RISSE, L. M., ZHANG, X. (1996). Curve numbers and Green Ampt effective hydraulic conductivities. Water Resources Bulletin, 32 (1): 125-136.
  • NEITSCH, S. L., ARNOLD, J. G., KINIRY, J. R., WILLIAMS, J. R., KING, K. W. (2002). Soil and water assessment tool. Theoretical documentation. Texas Water Resources Institute, Texas.
  • NRCS (1993). Soil survey manual. http://www.nhq.nrcs.usda.gov/JDV/ssmnew.
  • NRCS (2007). Part 630. Hydrology. National Engineering Handbook. Washington D.C.
  • OVERTON, D. E. (1964). Mathematical refinement of an infiltration equation for watershed engineering. USDA Agricultural Research Service, Washington.
  • PHILIP, J. R. (1957). The theory of infiltration. Chapter 1. Soil Science, 83: 345-357
  • PORTA, J., LÓPEZ-ACEVEDO, M., ROQUERO, C. (1999). Edafología. Para la agricultura y el medio ambiente. Ed. Mundi-Prensa, Madrid.
  • RAVI, V., WILLIAMS, J. R. (1998). Estimation of infiltration rate in the vadose zone: compilation of simple mathematical models. Volume I. EPA, Ada.
  • RAWLS, W. J., AHUJA, L. R., BRAKENSIEK, D., SHIRMOHAMMADI, A. (1993). Infiltration and soil water movement. En: Handbook of hydrology (Maidment, D. R., ed.). Ed. McGraw Hill, New York.
  • RAWLS, W. L., BRAKENSIEK, D. L. (1983). A procedure to predict Green and Ampt infiltration parameters. En: Proc. Am. Soc. of Agr. Eng. on Advan. in infiltration, Chicago.
  • SCS (1991). Engineering field handbook. Chapter 2. SCS, Washington D.C.
  • SCS (1954). National Engineering Handbook, section 4 Hydrology. USDA-SCS, Washington D.C.
  • SIDIRAS, N., ROTH, C. H. (1987). Infiltration measurements with double-ring infiltrometers and a rainfall simulator under different surface conditions on an oxisol. Soil and Tillage Research, 9 (2): 161-168.
  • SKAGGS, R. W., KHAHEEL, R. (1982). Infiltration. En: Hydrologic modeling of small watersheds (Haan, C. T., Johnson, H. P., Brakensiek, D. L., eds.). ASAE Monograph No. 5, St. Joseph.
  • SSDS (1993). Soil survey manual. Handbook 18. Soil Survey Division Staff. Soil Conservation Service (USDA), Washington, D.C.
  • TÉMEZ, J. R. (1987). Cálculo hidrometeorológico de caudales máximos en pequeñas cuencas naturales. MOPU. Dirección General de Carreteras, Madrid.
  • TOUMA, J., ALBERGEL, J. (1992). Determining soil hydrologic properties from rain simulator or double ring infiltrometer experiments: a comparison. Journal of Hydrology, 135: 73-86.
  • TRICKER, A. S. (1978). The infiltration cylinder: some comments on its use. Journal of Hydrology, 36: 383-391.
  • TRUEBA, C., MILLÁN, R., SDCHIMD, T., LAGO, C., GUTIÉRREZ, J. (2000). Estimación de índices de vulnerabilidad radiológica para los suelos peninsulares españoles. CIEMAT, Madrid.
  • VALERÓN, B., MEIXNER, T. (2010). Overland flow generation in chaparral ecosystems: temporal and spatial variability. Hydrological Processes, 24 (1): 65-75.
  • WILLIAMS, J. R., OUYANG, Y., CHEN, J. S., RAVI, V. (1998). Estimation of infiltration rate in the vadose zone: application of selected models. Volume II. EPA, Ada.
  • YASEEF, N. R., YAKIR, D., ROTENBERG, E., SCHILLER, G., COHEN, S. (2010). Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology, 3 (2): 143-154.
  • ZAPATA, A., MANZANO, F. (2008). Influence of six tree species on water infiltration. Agrociencia, 42 (7): 835-845.
  • ZEGELIN, S. J., WHITE, I. (1982). Design for a field sprinkler infiltrometer. Soil Science Society of America Journal, 46-6: 1129-1133.