Aerosol absorption measurements at the ALOMAR subarctic station
- Montilla-Rosero, Elena
- Rodríguez, Edith
- Mogo, Sandra
- Cachorro, Victoria
- Rodrigo, Rubén
- de Frutos, Ángel
ISSN: 2171-8814
Año de publicación: 2011
Título del ejemplar: V Workshop LIDAR measur. in Latinamerica
Volumen: 44
Número: 1
Páginas: 25-31
Tipo: Artículo
Otras publicaciones en: Óptica pura y aplicada
Resumen
The global study of atmospheric aerosol is one of the key factors in regards to climate change and those effects. Over the last 4 years a strong research work on aerosols properties characterization have been carried out into the Atmospheric Optics Group of the University of Valladolid (GOA-UVa) in Spain. We present the results about aerosol absorption coefficient measurements with two different techniques: the “integrating sphere photometer” and the particle soot absorption photometer (PSAP, Radiance Research). This data was acquired into the summer campaign 2008, made at north of Norway, like a result of the participation of GOA in the POLARCAT project, lead by the Norwegian Institute for Air Research, and included in the Fourth International Polar Year. Both methods are filter based and provide in-situ measurements that could be combined with optical column measurements for a better characterization of local aerosol. It contributes especially to the investigation of pollution events and to establishment the effects of the population over any local aerosol climatology. Based on this research background and the affordable and reliable instrumentation described in this work, the research can continue in Colombia in close collaborations with Spanish research groups
Referencias bibliográficas
- IPCC - 2001, Climate Change 2001: The Scientific Basis, J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson, Edts., Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, pp. 881 (2001).
- WMO - 2003, Aerosol Measurement Procedures, Guidelines and Recommendations, No 153, World Meteorological Organization, Geneva (2003).
- T. Anderson, R. Charlson, N. Bellouin, O. Boucher, M. Chin, S. Christopher, J. Haywood, Y. Kaufman, S. Kinne, J. Ogren, L. Remer, T. Takemura, D. Tanré, O. Torres, C. Trepte, B. Wielicki, D. Winker, H. Yu,. "An "A-Train" strategy for quantifying direct aerosol forcing of climate", Bull. Am. Met. Soc. 86, 1795-1809 (2005).
- J. Sciare, K. Oikonomou, H. Cachier, N. Mihalopoulos, M. O. Andreae, W. Maenhaut, R. Sarda-Estève, "Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign", Atmos. Chem. Phys. 5, 2427-2461 (2005).
- O. Schmid, P. Artaxo, W. P. Arnott, D. Chand, L. V. Gatti, G. P. Frank, A. Hoffer, M. Schnaiter, M. Andreae "Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurements techniques", Atmos. Chem. Phys. 6, 3443-3462 (2006).
- A.-C. Engvall, R. Krejci, J. Ström, R. Treffeisen, R. Scheele, O. Hermansen, J. Paatero, "Changes in aerosol properties during spring-summer period in the Arctic troposphere", Atmos. Chem. Phys. 8, 445-462 (2008).
- S. Mogo, V. E. Cachorro, M. Sorribas, A. de Frutos, R. Fernández, "Measurements of continuos spectra of atmospheric absorption coefficients from UV to NIR via optical method", Geophys. Res. Lett. 32, L13811 (2005).
- T. C. Bond, T. L. Anderson, D. Campbell, "Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols", Aerosol Sci. Tech. 30, 582-600 (1999).
- D. Delene, J. A. Ogren, "Variability of aerosol optical properties at four North American surface monitoring sites", J. Atmos. Sci. 59, 1135-1150 (2002).
- G. Hagler, M. Bergin, E. Smith, J. Dibb, "A summer time series of particulate carbon in the air and snow at Summit, Greenland", J. Geophys. Res. 112, D21309 (2007).
- R. W. Bergstrom, "Predictions of the spectral absorption and extinction coefficients of an urban air pollution aerosol model", Atmos. Environ. 6, 247-258 (1972).
- C. Tomasi, V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R. S. Stone, E. Andrews, S. Sharma, V. Radionov, W. Von Hoyningen-Huene, K. Stebel, G. H. Hansen, C. L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Ström, C. Toledano, V. Cachorro, P. Ortiz, A. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zielinski, T. Petelski, T. Yamanouchi, "Aerosols in polar regions: A historical overview based on optical depth and in situ observations", J. Geophys. Res. 112, D16205 (2007).
- R. W. Bergstrom, P. Pilewskie, P. B. Russell, J. Redemann, T.C. Bond, P. K. Quinn, B. Sierau,. "Spectral absorption properties of atmospheric aerosols", Atmos. Chem. Phys. 7, 5937-5943 (2007).
- R. Draxler, G. Rolph, "Hybrid single-particle Lagrangian integrated trajectory", Model access via NOAA ARL READY, http://www.arl.noaa.gov/ready/hysplit4.html, NOAA Air Resources Laboratory, Silver Spring, MD (2003).