Leveraging unstructured data sources in asset pricing

  1. Rodríguez Gallego, Alejandro
Dirigida per:
  1. Isabel Figuerola Ferreti Garrigues Director/a
  2. Sara Lumbreras Sancho Codirector/a

Universitat de defensa: Universidad Pontificia Comillas

Fecha de defensa: 22 de de novembre de 2021

Tribunal:
  1. Gabriel de la Fuente Herrero President
  2. Cristina Puente Águeda Secretari/ària
  3. Ricardo Correia Vocal
  4. Paloma Bilbao Calabuig Vocal
  5. Pedro Jose Serrano Jimenez Vocal

Tipus: Tesi

Teseo: 703633 DIALNET

Resum

This thesis analyzes the impact on various aspects of asset valuation of the recent technological advances and the vast amount of data available today. Specifically, Chapter 2 frames the current state of the discipline in the new context generated by the latest technological disruptions. Next, Chapter 3 conducts a systematic literature review to identify an unexplored gap at the intersection among sustainability, asset valuation, and modern techniques such as Natural Language Processing (NLP). Subsequently, chapter 4 delves empirically into this gap, producing sustainability metrics for US companies with NLP and demonstrating their convenience when included in the Fama-French asset valuation model. Finally, Chapter 5 contributes to the persistent debate on the financial analysts’ predictive capability by comparing oil price forecasts with futures contracts using unstructured data.