Tree species with potential for reforestation in coastal zones of the humid tropics
- Georgina Vargas-Simón 1
- Marivel Domínguez-Domínguez 2
- Valentín Pando-Fernández 3
- Pablo Martínez-Zurimendi 3
-
1
Universidad Juárez Autónoma de Tabasco
info
- 2 Colegio de Postgraduados, Campus Tabasco
-
3
Universidad de Valladolid
info
ISSN: 2171-5068
Any de publicació: 2022
Volum: 31
Número: 1
Tipus: Article
Altres publicacions en: Forest systems
Resum
Aim of study: The native species of warm humid climates Ceiba pentandra, Tabebuia rosea, Gliricidia sepium, Enterolobium cyclocarpum and Brosimum alicastrum are often included in Mexican reforestation programs. We evaluated the growth response in sandy soils of these species that could serve as pioneers in the restoration of coastal areas. Area of study: Alluvial plain in Frontera, Tabasco, Mexico. Material and methods: A total of 1080 plants were planted in 2014 and evaluated for 23 months in 30 plots under a randomized block design with six replications. The sample plots each occupied 36 m2 (each with 16 plants). Survival percentage, stem height (SH), basal diameter (BD) and basal area (BA) were quantified. Survival and growth variables were analyzed using logistic regression and ANOVA for repeated measures, respectively. Main results: At the end of the experiment (2016), high survival was demonstrated in G. sepium (88 %) and in C. pentandra (86 %), while B. alicastrum presented total mortality at six months. The highest values of SH and BD were presented in C. pentandra (2.9 m and 7.8 cm, respectively) and in G. sepium (2.6 m and 4.2 cm, respectively). Gliricidia sepium differed significantly from C. pentandra in terms of BA (5.9 vs. 23 m2 ha-1, respectively). Research highlights: The native species C. pentandra and G. sepium presented high survival and growth in the sandy soils; G. sepium showed strong adaptation to the environment and C. pentandra offered suitable coverage, characteristics that are necessary for the success of reforestation and restoration programs.
Referències bibliogràfiques
- Abengmeneng CS, Ofori DA, Kumapley P, Akromah R, Jamnadass R, 2015. Estimation of heritability and genetic gain in height growth in Ceiba pentandra. Afr J Biotechnol 14: 1880-1885.
- Araque O, Jaimez RE, Azócar C, Espinoza W, Tezara W, 2009. Relaciones entre anatomía foliar, intercambio de gases y crecimiento en juveniles de cuatro especies forestales. Interciencia 34: 725-729.
- Arigbede OM, Tan ZL, Anele UY, Sun ZH, Tang SX, Han XF, et al., 2012. Effects of age and species on agronomic performance, chemical composition and in vitro gas production of some tropical multi-purpose tree species. J Agric Sci 150: 725-737. https://doi.org/10.1017/S0021859612000184
- Bonilla VV, 2019. Variación en composición y estructura de la vegetación leñosa de un bosque húmedo premontano transición seca, debido a la actividad agrícola y ganadera. Cuadernos de Investigación, UNED Res J 11: 24-37. https://doi.org/10.22458/urj.v11i2.2293
- Bonilla-Moheno M, Holl KD, 2010. Direct seeding to restore tropical mature-forest species in areas of slash-and-burn agriculture. Restor Ecol 18: 438-445. https://doi.org/10.1111/j.1526-100X.2009.00580.x
- Canul-Solís J, Alvarado-Canché C, Castillo-Sánchez L, Sandoval-Gío J, Alayón-Gamboa J, Piñeiro-Vázquez A, et al., 2018. Gliricidia sepium (Jacq.) Kunth ex Walp. a multipurpose arboreal species for the sustainability of tropical agroecosystems. Agr Product 11: 195-200.
- CONAGUA, 2014, 2015, 2016. Reporte del clima en México. Reporte anual 2014, 2015, 2016 (respectivamente). Comisión Nacional del Agua, Servicio Meteorológico Nacional. Cd de México, México.
- Crouzeilles R, Ferreira MS, Chazdon RL, Lindenmayer DB, Sansevero JB, Monteiro L, et al., 2017. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci Adv 3: e1701345. https://doi.org/10.1126/sciadv.1701345
- de la Cruz-Uc X, Valdés-Manzanilla A, Barradas VL, Cámara-Cabrales LDC, 2019. Comunidades sintéticas arbóreas: una alternativa al deterioro forestal en la parte baja de la cuenca del río Usumacinta en Tabasco, México. Bosque (Valdivia) 40: 117-127. https://doi.org/10.4067/S0717-92002019000200117
- de Oliveira VRD, Lima e Silva PS, de Paiva HN, Pontes FST, Antonio RP, 2016. Growth of arboreal leguminous plants and maize yield in agroforestry systems. Rev Árvore 40: 679-688. https://doi.org/10.1590/0100-67622016000400011
- de Sousa K, Detlefsen G, Tobar D, de Melo, VFE, Casanoves F, 2016. Population dynamic and management of Pinus oocarpa and Tabebuia rosea within silvopastoral systems in Central America. Agrofor Syst 91: 1119-1127. https://doi.org/10.1007/s10457-016-9988-x
- de Souza CR, de Azevedo CP, Lima MR, Rossi LMB, 2010. Comportamento de espécies florestais em plantios a pleno sol e em faixas de enriquecimento de capoeria na Amazonia. Acta Amaz 40: 127-134. https://doi.org/10.1590/S0044-59672010000100016
- Douterlungne D, Ferguson BG, Siddique I, Soto-Pinto L, Jiménez-Ferrer G, Gavito ME, 2015. Microsite determinants of variability in seedling and cutting establishment in tropical forest restoration plantations. Restor Ecol 23: 861-871. https://doi.org/10.1111/rec.12247
- Elliott SP, Navakitbumrung C, Kuarak S, Zangkum V, Anusarnsunthorn DB, 2003. Selecting framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. Forest Ecol Manag 184: 177-191. https://doi.org/10.1016/S0378-1127(03)00211-1
- Freitas MG, Rodrigues SB, Campos-Filho EM, do Carmo GHP, da Veiga JM, Junqueira RGP, Vieira DLM, 2019. Evaluating the success of direct seeding for tropical forest restoration over ten years. Forest Ecol Manag 438: 224-232. https://doi.org/10.1016/j.foreco.2019.02.024
- Giannini TC, Giulietti AM, Harley RM, Viana PL, Jaffe R, Alves R, et al., 2017. Selecting plant species for practical restoration of degraded lands using a multiple‐trait approach. Austral Ecol 42: 510-521. https://doi.org/10.1111/aec.12470
- González‐Tokman DM, Barradas VL, Boege K, Domínguez CA, del‐Val E, Saucedo E, Martínez‐Garza C, 2017. Performance of 11 tree species under different management treatments in restoration plantings in a tropical dry forest. Restor Ecol 26: 642-649. https://doi.org/10.1111/rec.12617
- Guimarães ZTM, dos Santos VAHF, Nogueira WLP, Martins NO de A, Ferreira MJ, 2018. Leaf traits explaining the growth of tree species planted in a Central Amazonian disturbed area. Forest Ecol Manag 430: 618-628. https://doi.org/10.1016/j.foreco.2018.08.048
- Hall JS, Love EB, Garen JE, Slusser JL, Saltonstall K, Mathias S, et al., 2011. Tree plantations on farms: Evaluating growth and potential for success. Forest Ecol Manag 261: 1675-1683. https://doi.org/10.1016/j.foreco.2010.09.042
- Hernández-Hernández ML, Velasco-García MV, López-Upton J, Galán-Larrea R, Ramírez-Herrera C, Viveros-Viveros H, 2019. Crecimiento y supervivencia de procedencias de Enterolobium cyclocarpum en la costa de Oaxaca, México. Bosque (Valdivia) 40: 173-183. https://doi.org/10.4067/S0717-92002019000200173
- INEGI, 2019. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Centla, Tabasco. Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/27/27003.pdf. [3 July 2020].
- Joslin A, Markewitz D, Morris LA, de Assis OF, Kato O, 2016. Improved fallow: growth and nitrogen accumulation of five native tree species in Brazil. Nutr Cycling Agroecosyst 106: 1-15. https://doi.org/10.1007/s10705-016-9783-0
- Kolb M, Galicia L, 2018. Scenarios and story lines: drivers of land use change in southern Mexico. Environ Dev Sustain 20: 681-702. https://doi.org/10.1007/s10668-016-9905-5
- Laborde J, Corrales-Ferrayola I, 2012. Siembra directa de Brosimum alicastrum Sw. (Moraceae) y Enterolobium cyclocarpum (Jacq.) Griseb. (Mimosaceae) en diferentes habitats en el trópico seco del centro de Veracruz. Acta Bot Mex 100: 107-134. https://doi.org/10.21829/abm100.2012.33
- Mayoral C, van Breugel M, Cerezo A, Hall JS, 2017. Survival and growth of five Neotropical timber species in monocultures and mixtures. Forest Ecol Manag 403: 1-11. https://doi.org/10.1016/j.foreco.2017.08.002
- Moreno-Casasola P, Paradowska K, 2009. Especies útiles de la selva baja caducifolia en las dunas costeras del centro de Veracruz. Madera Bosques 15: 21-44. https://doi.org/10.21829/myb.2009.1531184
- NOM-021-RECNAT-2000, 2000. Establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreos y análisis. Diario Oficial de la Federación del 2000: 14-17.
- Palma-López DJ, Cisneros-Domínguez J, Moreno-Cáliz E, Rincón-Ramírez JA, 2007. Plan de uso sustentable de los suelos de Tabasco. Colegio de Postgraduados, Campus Tabasco, Instituto para el Desarrollo de Sistemas de Producción del Trópico Húmedo de Tabasco, Villahermosa, México.
- Pantera Α, Mosquera-Losada MR, Herzog F, den Herder M, 2021. Agroforestry and the environment. Agrofor Syst 95: 767-774. https://doi.org/10.1007/s10457-021-00640-8
- Park A, van Breugel M, Ashton MS, Wishnie M, Mariscal E, Deago J, et al., 2010. Local and regional environmental variation influences the growth of tropical trees in selection trials in the Republic of Panama. Forest Ecol Manag 260: 12-21. https://doi.org/10.1016/j.foreco.2010.03.021
- Pedraza RA, Williams-Linera G, 2003. Evaluation of native tree species for the rehabilitation of deforested areas in a Mexican cloud forest. New Forest 26: 83-99. https://doi.org/10.1023/A:1024423511760
- Pennington TD, Sarukhán J, 2005. Árboles tropicales de México. Manual para la identificación de las principales especies. Univ. Nal. Autónoma de México, Fondo de Cultura Económica, Cd. de México, Mexico.
- Plath M, Mody K, Potvin C, Dorn S, 2011. Establishment of native tropical timber trees in monoculture and mixed-species plantations: small-scale effects on tree performance and insect herbivory. Forest Ecol Manag 261: 741-750. https://doi.org/10.1016/j.foreco.2010.12.004
- Pineda-Herrera E, Valdez-Hernández JI, Pérez-Olvera CP, 2016. Crecimiento en diámetro y fenología de Tabebuia rosea (Bertol.) DC. en Costa Grande, Guerrero, México. Acta Univ 26: 19-28. https://doi.org/10.15174/au.2016.914
- PROECEN, 2003. Estudio de comportamiento de especies maderables nativas con importancia comercial del bosque húmedo. Guías silviculturales de 23 especies forestales del bosque húmedo de Honduras. Escuela Nacional de Ciencias Forestales (ESNACIFOR), Organización Internacional de las Maderas Tropicales (OIMT).
- Ramos-Reyes R, Gama-Campillo LM, Núñez-Gómez JC, Sánchez-Hernández R, Hernández-Trejo H, Ruiz-Álvarez O, 2016. Adaptación del modelo de vulnerabilidad costera en el litoral tabasqueño ante el cambio climático. Rev Mex Cienc Agric 13: 2551-2563. https://doi.org/10.29312/remexca.v0i13.478
- Ramos-Trejo OS, Canul-Solís JR, Alvarado-Canché ADR, Castillo-Sánchez LE, Sandoval-Gío JJ, Campos-Navarrete MJ, et al., 2020. Growth, forage yield and quality of Morus alba L. and Gliricidia sepium (Jacq.) Walp. in mixed and pure fodder bank systems in Yucatan, México. Agroforest Syst 94: 151-157. https://doi.org/10.1007/s10457-019-00378-4
- Román-Dañobeytia F, Levy-Tacher S, Perales-Rivera H, Ramírez-Marcial N, Douterlungne D, López-Mendoza S, 2007. Establecimiento de seis especies arbóreas nativas en un pastizal degradado en La Selva Lacandona, Chiapas, México. Ecol Apl 6: 1-8. https://doi.org/10.21704/rea.v6i1-2.335
- Román-Dañobeytia FJ, Levy-Tacher SI, Aronson J, Rodrigues RR, Castellanos-Albores J, 2012. Testing the performance of fourteen native tropical tree species in two abandoned pastures of the Lacandon rainforest region of Chiapas, Mexico. Restor Ecol 20: 378-386. https://doi.org/10.1111/j.1526-100X.2011.00779.x
- Sabogal C, Guariguata MR, Broadhead J, Lescuyer G, Savilaakso S, Essoungou JN, Sist P, 2013. Manejo forestal de uso múltiple en el trópico húmedo; oportunidades y desafíos para el manejo forestal sostenible. FAO Forest Paper 173, Roma/ Centro Internacional de Investigación Forestal, Bogor, Indonesia.
- Salisbury CL, Potvin C, 2015. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47: 559-568. https://doi.org/10.1111/btp.12252
- Serrada-Hierro R, 2008. Apuntes de selvicultura. Servicio de Publicaciones EUIT Forestal, Univ Politécnica, Madrid, Spain.
- Silva PSL, Holanda AER, Paiva HND, Oliveira FHTD, Oliveira OFD, 2012. Planting density and initial growth of two tree species adapted to the semi-arid region. Rev Árvore 36: 951-960. https://doi.org/10.1590/S0100-67622012000500017
- Valverde-Otárola JC, Arias D, 2020. Efectos del estrés hídrico en crecimiento y desarrollo fisiológico de Gliricidia sepium (Jacq.) Kunth ex Walp. Colomb For 23: 20-34. https://doi.org/10.14483/2256201X.14786
- van Breugel M, Hall JS, Craven DJ, Gregoire TG, Park A, Dent DH, et al., 2011. Early growth and survival of 49 tropical tree species across sites differing in soil fertility and rainfall in Panama. Forest Ecol Manag 261: 1580-1589. https://doi.org/10.1016/j.foreco.2010.08.019
- Villanueva-López G, Martínez-Zurimendi P, Casanova-Lugo F, Ramírez-Avilés L, Montañez-Escalante PI, 2015. Carbon storage in livestock systems with and without live fences of Gliricidia sepium in the humid tropics of Mexico. Agrofor Syst 89: 1083-1096. https://doi.org/10.1007/s10457-015-9836-4
- Villanueva-Partida CR, Casanova-Lugo F, González-Valdivia NA, Villanueva-López G, Oros-Ortega I, Cetzal-Ix W, Basu SK, 2019. Traditional uses of dispersed trees in the pastures of the mountainous region of Tabasco, Mexico. Agrofor Syst 93: 383-394. https://doi.org/10.1007/s10457-017-0125-2
- Weaver PL, Schwagerl JJ, 2008. Secondary forest succession and tree planting at the Laguna Cartagena and Cabo Rojo wildlife refuges in southwestern Puerto Rico. AMBIO: J Hum Environ 37: 598-603. https://doi.org/10.1579/0044-7447-37.7.598
- Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeño N, Ibarra D, et al., 2007. Initial performance and reforestation potential of 24 tropical tree species planted across a precipitation gradient in the Republic of Panama. Forest Ecol Manag 243: 39-49. https://doi.org/10.1016/j.foreco.2007.02.001