Phenological characterization of Fagus sylvatica L. in Mediterranean populations of the Spanish Central Range with Landsat OLI/ETM+ and Sentinel-2A/B

  1. Gómez, C. 1
  2. Alejandro, P. 2
  3. Montes, F. 1
  1. 1 INIA-CIFOR, Dep. of Forest Dynamics and Management, Ctra. La Coruña km 7.5, 28040 Madrid, Spain
  2. 2 Quasar Science Resources, Ctra. La Coruña km 22.3, Las Rozas, 28232 Madrid, Spain
Journal:
Revista de teledetección: Revista de la Asociación Española de Teledetección

ISSN: 1133-0953

Year of publication: 2020

Issue: 55

Pages: 71-80

Type: Article

DOI: 10.4995/RAET.2020.13561 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de teledetección: Revista de la Asociación Española de Teledetección

Sustainable development goals

Abstract

The Spanish Central Range hosts some of the southernmost populations of Fagus sylvatica L. (European beech). Recent cartography indicates that these populations are expanding, going up-streams and gaining ground to oak forests of Quercus pyrenaica Willd., heather-lands, and pine plantations. Understanding the spectral phenology of European beech populations—which leaf flush occurs earlier than other vegetation formations—in this Mediterranean mountain range will provide insights of the species recent dynamics, and will enable modelling its performance under future climate oscillations. Intra-annual series of 211 Landsat OLI/ETM+ images, acquired between April 2013-December 2019, and 217 Sentinel-2A/B images, acquired between April 2017-December 2019, were employed to characterize the spectral phenology of European beech populations and five other vegetation types for comparison in an area of 108000 ha. Vegetation indices (VI) including the Normalized Difference Vegetation Index (NDVI) and Tasseled Cap Angle (TCA) from Landsat, and the NDVI and Enhanced Vegetation Index (EVI) from Sentinel-2 were retrieved from sample pixels. The temporal series of these VI were modelled with Savitzky-Golay and double logistic functions, and assessed with TIMESAT software, enabling the parametric characterization of European beech spectral phenology in the area with the start, length, and end of season, as well as peak time and value. The length of beech phenological season was similar when portrayed by Landsat and Sentinel-2 NDVI time series (214 and 211 days on average for the common period 2017-2019) although start and end differed. Compared with NDVI counterparts the TCA season started and peaked later, and the EVI season was shorter. Sentinel-2 NDVI peaked higher than Landsat NDVI. The European beech had an earlier (21 days on average) start of season than competing oak forests. Joint analysis of data from the virtual constellation Landsat/ Sentinel-2 and calibration with field observations may enable more detailed knowledge of phenological traits at the landscape scale.

Funding information

This work was funded by the Spanish Ministry of Science, Innovation and University through projects: AGL2013-46028-R ?Forest management facing the change in forest ecosystems dynamics: a multiscale approach (SCALyFOR)? and AGL201676769-C2-1-R ?Influence of natural disturbance regimes and management on forests dynamics, structure and carbon balance (FORESTCHANGE)?. Field work assistance by Diego Gal?n, Bel?n O?ate, and Gregorio Cerezo, and the support of Jos? Ju?rez Ben?tez, director of the Sierra Norte de Guadalajara Natural Park are much appreciated.

Bibliographic References

  • Augspurger, C.K. 2013. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41-50. https://doi.org/10.1890/12-0200.1
  • Bolton, D.K., Gray, J.M, Melaas, E.K., Moon, M., Eklundh, L., Friedl, M.A. 2020. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery, Remote Sensing of Environment, 240, 111685. https://doi.org/10.1016/j.rse.2020.111685
  • Bucha T, Koren, M. 2017. Phenology of the beech forests in the Western Carpathians from MODIS for 2000-2015. iForest (Biosciences and Forestry), 10, 537-546. https://doi.org/10.3832/ifor2062-010
  • Crist, E.P. 1985. A TM Tasseled Cap equivalent transformation for reflectance factor data. Remote Sensing of Environment, 17, 301-306. https://doi.org/10.1016/0034-4257(85)90102-6
  • Delhon, C., Thiébault, S. 2005. The migration of beech (Fagus sylvatica L.) up the Rhone: the Mediterranean history of a "mountain" species. Veget. Hist. Archaeobot., 14, 119-132. https://doi.org/10.1007/s00334-005-0068-9
  • Dittmar, C., Elling, W. 2006. Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. European Journal of Forest Research, 125, 181-188. https://doi.org/10.1007/s10342-005-0099-x
  • Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernández, V., Gascon, F., Hoesrch, B., Isola, C., Labertini, P., Marimort, P., Meygret, A., Spoto, F., Sya, O., Marchese, F., Bargellini, P. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026
  • Eklundh, L., Jönsson, P. 2017. Timesat 3.3 Software Manual, Lund and Malmö University, Sweden.
  • Fang, J., Lechovicz, M.J. 2006. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33, 1804-1819. https://doi.org/10.1111/j.1365-2699.2006.01533.x
  • Fu, Y.H., Piao S., Op de Beeck, M.O., Cong, N., Zhao, H., Zhang, Y., Menzel, A., Janssens, I.A., 2014. Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 23(11), 1255-1263. https://doi.org/10.1111/geb.12210
  • Gerard F.F., George, C.T., Hayman, G., Chavana- Bryant, C., Weedon, G.P. 2020. Leaf phenology amplitude derived from MODIS NDVI and EVI: maps of leaf phenology synchrony for Meso- and South America. Geosciences Data Journal, 00, 1-14. https://doi.org/10.1002/gdj3.87
  • Gao, B.C. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
  • Gil, L., Náger, J.A., Aranda-García, I., González- Doncel, I., Gonzalo-Jiménez, J., López de Heredia, U., Millerón, M., Nanos, N., Perea García-Calvo, R., Rodríguez-Calcerrada, J., Valbuena-Carabaña, M. 2010. El Hayedo de Montejo: una gestión sostenible. Dirección General del Medio Ambiente, Spain, 151 pp.
  • Gómez, C., Alejandro, P., Aulló-Maestro, I., Hernández, L., Sánchez de Dios, R., Sainz-Ollero, H., Velázquez, J.C., Montes, F. 2019. Presence of European beech in its Spanish southernmost limit characterized with Landsat intra-annual time series. Proceedings of the AIT 2018, IX Conference of the Italian Society of Remote Sensing.
  • Gonzalo, J. 2010. Diagnosis fitoclimática de la España peninsular. Hacia un modelo de clasificación funcional de la vegetación y de los ecosistemas peninsulares españoles. Serie Técnica: Naturaleza y Parques Nacionales. Ministerio de Medio Ambiente y Medio Rural y Marino. Organismo Autónomo Parques Nacionales.
  • Herrera, S., Gutiérrez, J.M., Ancell, R., Pons, M.R., Frías, M.D., Fernández, J. 2012. Development and Analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). International Journal of Climatology, 32, 74-85. https://doi.org/10.1002/joc.2256
  • Houston Durrant, T., de Rigo, D., Candullo, G. 2016. Fagus sylvatica and other beeches in Europe: distribution, habitat, usage and threats in San Miguel Ayanz, J., de Rigo, D., Candullo, G., Houston Durrant, T., Mauri, A. (eds.) European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg, pp.e012b90
  • Jönsson, P., Cai., Z., Melaas, E., Friedl, M., Eklundh, L. 2018. A method for robust estimation of vegetation seasonality from Landsat and Sentinel-2 time series data. Remote Sensing, 10, 365. https://doi.org/10.3390/rs10040635
  • Li, J., Roy, D.P. 2017. A global analysis of Sentinel- 2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sensing, 9, 902. https://doi.org/10.3390/rs9090902
  • Liu, H.Q., Huete, A.R. 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33, 457-465. https://doi.org/10.1109/TGRS.1995.8746027
  • Melaas, E.K., Friedl, M.A., Zhu, Z. 2013. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sensing of Environment, 132, 176-185. https://doi.org/10.1016/j.rse.2013.01.011
  • Melaas, E.K., Sulla-Menashe, D., Gray, J.M., Black, T.A., Morin, T.H., Andrew, D.R., Friedl, M.A. 2016. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sensing of Environment, 186, 452-464. https://doi.org/10.1016/j.rse.2016.09.014
  • Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B., Ohmann, J.L. 2010. Quantification of live aboveground biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches. Remote Sensing of Environment, 114, 1053-1068. https://doi.org/10.1016/j.rse.2009.12.018
  • Rubio-Cuadrado, A., Camarero, J.J., Del Río, M., Sánchez-González, M., Ruiz-Peinado, R., Bravo- Oviedo, A., Gil, L., Montes, F. 2018. Long-term impacts of drought on growth and forest dynamics in a temperate beech-oak-birch forest. Agricultural and Forest Meteorology, 259, 48-59. https://doi.org/10.1016/j.agrformet.2018.04.015
  • Ruiz-Labourdette, D., Nogués-Bravo, D., Sainz- Ollero, H., Schmitz, M.F., Pineda, F.D. 2012. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 39, 162-176. https://doi.org/10.1111/j.1365-2699.2011.02592.x
  • Sánchez de Dios, R., Hernández, L., Montes, F., Sainz- Ollero, H., Cañellas, I. 2016. Tracking the leading edge of Fagus sylvatica in North-Western Iberia: Holocene migration inertia, forest succession and recent global change. Perspectives in Plant Ecology, Evolution and Systematics, 20, 11-21. https://doi.org/10.1016/j.ppees.2016.03.001
  • Sánchez de Dios, R., Gómez, .C, Aulló, I., Cañellas, I., Gea-Izquierdo, G., Montes, F., Sain-Ollero, H., Velázquez, J.C., Hernández, L. 2020. Fagus sylvatica L. peripheral populations in the Mediterranean Iberian Peninsula: climatic or anthropic relicts? Ecosystems. https://doi.org/10.1007/s10021-020-00513-8
  • Stanimirova, R., Cai, Z., Melaas, E.K., Gray, J.M., Eklundh, L., Jönsson, P., Friedl, M.A. 2019. An empirical assessment of the MODIS land cover dynamics and TIMESAT land surface phenology algorithms. Remote Sensing, 11, 2201. https://doi.org/10.3390/rs11192201
  • Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  • Van Rossum, G., Drake, F.L., 2009. Python 3 reference manual. Soho Books. Scotts Valley, CA, USA. 244 pp.
  • Wulder, M.A., et al. 2019. Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127-147. https://doi.org/10.1016/j.rse.2019.02.015
  • Zeng, L., Wardlow B.D., Xiang, D., Hu, S., Li, D. 2020. A review of phenological metrics extraction using time-series, multispectral data. Remote Sensing of Environment, 237, 111511. https://doi.org/10.1016/j.rse.2019.111511