Facial affect recognition in myasthenia gravis

  1. Lázaro Pérez, Esther 1
  2. Amayra Caro, Imanol 1
  3. López Paz, Juan Francisco 1
  4. Jometón, Amaia 1
  5. Martín Rivera, Natalia 3
  6. Caballero, Patricia 1
  7. Nicolás Martínez, Luis de 1
  8. Hoffmann, Holger 2
  9. Kessler, Henrik 2
  10. Ruiz, Bego 4
  11. Martínez, Óscar 1
  1. 1 Universidad de Deusto
    info

    Universidad de Deusto

    Bilbao, España

    ROR https://ror.org/00ne6sr39

  2. 2 University Clinic for Psychosomatic Medicine and Psychotherapy
  3. 3 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

  4. 4 Centro de Referencia Estatal de Enfermedades Raras
Revista:
The Spanish Journal of Psychology

ISSN: 1138-7416

Año de publicación: 2013

Número: 16

Páginas: 1-7

Tipo: Artículo

DOI: 10.1017/SJP.2013.59 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: The Spanish Journal of Psychology

Resumen

The assessment of facial expression is an important aspect of a clinical neurological examination, both as an indicator of a mood disorder and as a sign of neurological damage. To date, although studies have been conducted on certain psychosocial aspects of myasthenia, such as quality of life and anxiety, and on neuropsychological aspects such as memory, no studies have directly assessed facial emotion recognition accuracy. The aim of this study was to assess the facial emotion recognition accuracy (fear, surprise, sadness, happiness, anger, and disgust), empathy, and reaction time of patients with myasthenia. Thirty-five patients with myasthenia and 36 healthy controls were tested for their ability to differentiate emotional facial expressions. Participants were matched with respect to age, gender, and education level. Their ability to differentiate emotional facial expressions was evaluated using the computer-based program Feel Test. The data showed that myasthenic patients scored significantly lower (p < 0.05) than healthy controls in the total Feel score, fear, surprise, and higher reaction time. The findings suggest that the ability to recognize facial affect may be reduced in individuals with myasthenia.

Referencias bibliográficas

  • Adolphs R., Damasio H., Tranel D., Cooper G., & Damasio A. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three dimensional lesion mapping. Journal of Neuroscience, 20, 1683-1690.
  • Adolphs R., Gosselin F., Buchannan T., Tranel D., Schyns P., & Damasio A. (2005). A mechanism for impaired fear recognition after amygdala damage. Nature, 433, 68-72. http://dx.doi.org/10.1038/nature03086.
  • Aviezer H., Bentin S., Hassin R., Meshino W., Kennedy J., Grewal S., & Moskovitch M. (2009). Not on the face alone: Perception of contextualized face expressions in Huntingtońs disease. Brain, 132, 1633-1644. http://dx.doi.org/10.1093/brain/awp067.
  • Bartel P., & Lotz B. (1995). Neuropsychological test performance and affect in myasthenia gravis. Acta Neurologica Scandinavica, 91, 266-270. http://dx.doi.org/10.1111/j.1600-0404.1995.tb07002.x.
  • Clader J., & Wang Y. (2005). Muscarinic receptor agonists and antagonists in the treatment of Alzheimer's disease. Current Pharmaceutical Design, 11, 3353-3361. http://dx.doi.org/10.2174/138161205774370762.
  • Cohen J. (1962). The statistical power of abnormal-social psychological research: A review. Journal of abnormal and social psychology, 65, 145-153. http://dx.doi.org/10.1037/h0045186.
  • Davis M. (1908). A multidimensional approach to individuals differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85-103.
  • Denham S. (1998). Emotional development in young children. New York, NY: Guilford Press.
  • Ekman P. (1993). Facial expression and emotion. American Psychologist, 48, 384-392http://dx.doi.org/10.1037//0003-066X.48.4.384.
  • Graef S., Schönknecht P., Sabri O., & Hegerl U. (2011). Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: An overview of preclinical and clinical findings. Psychopharmacology, 215, 205-229. http://dx.doi.org/10.1007/s00213-010-2153-8.
  • Grey J., Young A., Barker W., Curtis A., & Gibson D. (1997). Impaired recognition of disgust in Huntingtońs disease gene carriers. Brain, 120, 2029-2038. http://dx.doi.org/10.1093/brain/120.11.2029.
  • Halberstadt J., Winkielman P., Niedenthal P., & Dalle N. (2009). Emotional conception. How embodied concepts guide perception and facial action. Psychological Science, 20, 1254-1261. http://dx.doi.org/10.1111/j.1467-9280.2009.02432.x.
  • Hinton V., Fee R., De Vivo D., & Goldstein E. (2007). Poor facial affect recognition among boys with Duchenne muscular dystrophy. Journal of Autism Developmental Disorders, 37, 1925-1933. http://dx.doi.org/10.1007/s10803-006-0325-5.
  • Hoffmann H. (2010). Expression intensity, gender and facial emotion recognition: Women recognize only subtle facial emotions better than men. Acta Psychologica, 135, 278-283. http://dx.doi.org/10.1016/j.actpsy.2010.07.012.
  • Jehna M., Neuper C., Petrovic K., Wallner-Blazek M., Schmidt R., Fuchs S., Enzinger C. (2010). An exploratory study on emotion recognition in patients with a clinically isolated syndrome and multiple sclerosis. Clinical Neurology and Neurosurgery, 112, 482-484. http://dx.doi.org/10.1016/j.clineuro.2010.03.020.
  • Kamboj S., & Curran H. (2006a). Scopolamine induces impairments in the recognition of human facial expressions of anger and disgust. Psychopharmacology, 185, 529-535. http://dx.doi.org/10.1007/s00213-006-0332-4.
  • Kamboj S., & Curran H. (2006b). Neutral and emotional episodic memory: Global impairment after lorazepam or scopolamine. Psychopharmacology, 188, 482-488. http://dx.doi.org/10.1007/s00213-006-0552-7.
  • Keesey J. (1999). Does myasthenia gravis affect the brain? Journal of Neurological Science, 170, 77-89. http://dx.doi.org/10.1016/S0022-510X(99)00205-1.
  • Kessler H., Bayerl P., Deighton R., & Traue H. (2002). Facially Expressed Emotion Labelling (FEEL): PC-gestützter Test zur Emotionserkennung. [Facially Expressed Emotion Labeling (FEEL): A computer test for emotion recognition]. Verhaltenstherapie und Verhaltensmedizin, 23, 297-306.
  • Kipps C., Duggins A., McCusker E., & Calder A. (2007). Disgust and happiness recognition correlate with anteroventral insula and amygdala volume respectively in preclinical Huntington's disease. Journal of Cognitive Neuroscience, 19, 1206-1217. http://dx.doi.org/10.1162/jocn.2007.19.7.1206.
  • Kobayakawa M., Tsuruya N., Takeda A., Suzuki A., & Kawamura M. (2010). Facial emotion recognition and cerebral white matter lesions in myotonic dystrophy type 1. Journal of the Neurological Sciences, 290, 48-51. http://dx.doi.org/10.1016/j.jns.2009.11.011.
  • Kojevnikov A. (1986). Some aspects of myasthenia gravis. Annals of the New York Academy of Sciences, 135, 406.
  • Kuks J., & Oosterhuis H. (2003). Clinical presentation and epidemiology of myasthenia gravis. In H Kaminski (Ed.), Current clinical neurology: Myasthenia gravis and related disorders (pp. 93-113). Totowa, NJ: Human Press.
  • LeDoux J. (2007). The amygdala. Current Biology, 17, 868-874. http://dx.doi.org/10.1016/j.cub.2007.08.005.
  • Levin E., MecClernon J., & Rezvani A. (2006). Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology, 184, 523-539. http://dx.doi.org/10.1007/s00213-005-0164-7.
  • Lindquist K., Wager T., Kober H., Bliss-Moreau E., & Feldman L. (2012). The brain basis of emotion: A meta analytic review. Behavioral and Brain Sciences, 35, 121-143. http://dx.doi.org/10.1017/S0140525X11000446.
  • Mao Z., Mo X., Qin C., Lai Y., & olde Hartman T. (2010). Course and prognosis of myasthenia gravis: A systematic review. European Journal of Neurology, 17, 913-921. http://dx.doi.org/10.1111/j.1468-1331.2010.03017.x.
  • Matsumoto D., & Ekman P. (1988). Japanese and Caucasian facial expressions of emotion (IACFEE) [Slides]. San Francisco, CA: Intercultural and Emotion Research Laboratory, Department of Psychology, San Francisco State University.
  • Mazzola F., Seigal A., MacAskill A., Corden B., Lawrence K., & Skuse D. (2006). Eye tracking and fear recognition deficits in Turner syndrome. Social Neuroscience, 1, 259-169. http://dx.doi.org/10.1080/17470910600989912.
  • McLellan T., Johnson L., Dalrymple-Alford J., & Poeter R. (2008). The recognition of facial expressions of emotion in Alzheimeŕs disease: A review of findings. Acta Neuro psychiatrica, 20, 236-250. http://dx.doi.org/10.1111/j.1601-5215.2008.00315.x.
  • Meriggioli M., & Sanders D. (2009). Autoimmune myasthenia gravis: Emerging clinical and biological heterogeneity. Lancet Neurology, 8, 475-490. http://dx.doi.org/10.1016/S1474-4422(09)70063-8.
  • Mesulam M. (2004). The cholinergic lesion of Alzheimeŕs disease: Pivotal factor or side show? Learning and Memory, 11, 43-49. http://dx.doi.org/10.1101/lm.69204.
  • Miwa J., Freedman R., & Lester H. (2011). Neural systems governed by nicotinic acetylcholine receptors: Emerging hypotheses. Neuron, 70, 20-33. http://dx.doi.org/10.1016/j.neuron.2011.03.014.
  • Osserman K. (1958). Myasthenia gravis. New York, NY: Grune and Stratton.
  • Pérez-Albéniz A., Paúl J., Montes M. P., & Torres E. (2003). Adaptación de Interpersonal Reactivity Index (IRI) al español. [Validation of the Spanish version of the Interpersonal Reactivity Index]. Psicothema, 15, 267-272.
  • Philips L. (2003). The epidemiology of myasthenia gravis. Annals of the New York Academy of Sciences, 998, 407-412. http://dx.doi.org/10.1196/annals.1254.053.
  • Posamienter M., & Abdi H. (2003). Processing faces and facial expressions. Neuropsychology Review, 13, 113-143.
  • Sitek W., Bilinska M., Wieczorek D., & Nyka W. (2009). Neuropsychological assessment in myasthenia gravis. Neurological Sciences, 30, 9-14. http://dx.doi.org/10.1007/s10072-008-0001-y.
  • Sprengelmeyer R., Young A., Sprengelmeyer A., Calder A., Rowland D., Perrett D., Lange H. (1997). Recognition of facial expression: Selective impairment of specific emotions in Huntingtońs disease. Cognitive Neuropsychology, 14, 839-879. http://dx.doi.org/10.1080/026432997381376.
  • Thomsen M., Hansen H., Timmerman D., & Mikkelsen J. (2010). Cognitive improvement by activation of α7 nicotinic acetylcholine receptors: From animal models to human pathophysiology. Current Pharmaceutical Design, 16, 323-343. http://dx.doi.org/10.2174/138161210790170094.
  • Tucker D., Roeltgen D., Wann P., & Wertheimer R. (1988). Memory dysfunction in myasthenia gravis: Evidence for central cholinergic effects. Neurology, 38, 1173-1177. http://dx.doi.org/10.1212/WNL.38.8.1173.
  • Ybarra M., Kummer A., Comini E., Oliveira J., Gómez R., & Texeira A. (2011). Psychiatric Disorders in myasthenia gravis. Arquivos de Neuro-Psiquiatría, 69, 176-179. http://dx.doi.org/10.1590/S0004-282X2011000200006.
  • Whittington J., & Holland T. (2011). Recognition of emotion in facial expression by people with Prader-Willi syndrome. Journal of Intellectual Disability Research, 55, 75-84. http://dx.doi.org/10.1111/j.1365-2788.2010.01348.x.
  • Winblad S., Hellström P., Lindberg C., & Hansen S. (2006). Facial emotion recognition in myotonic dystrophy type 1 correlates with CTG repeat expansion. Journal of Neurological, Neurosurgery and Psychiatry, 77, 219-223. http://dx.doi.org/10.1136/jnnp.2005.070763.