Risk Attitude in Multicriteria Decision Analysis: A Compromise Approach

  1. Juan Ribes Rossiñol de Zagranada 2
  2. González-Pachón, Jacinto 1
  1. 1 Universidad Politécnica de Madrid
    info

    Universidad Politécnica de Madrid

    Madrid, España

    ROR https://ror.org/03n6nwv02

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
International Journal of Environmental Research and Public Health

ISSN: 1660-4601

Año de publicación: 2021

Volumen: 18

Número: 12

Páginas: 6536

Tipo: Artículo

DOI: 10.3390/IJERPH18126536 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Environmental Research and Public Health

Objetivos de desarrollo sostenible

Resumen

: In fields on which decisions need to be taken including health, as we are seeing nowadaysin the COVID-19 crisis, decision-makers face multiple criteria and results with a random component.In stochastic multicriteria decision-making models, the risk attitude of the decision maker is arelevant factor. Traditionally, the shape of a utility function is the only element that represents thedecision maker’s risk attitude. The eduction process of multi-attribute utility functions implies someoperational drawbacks, and it is not always easy. In this paper, we propose a new element withwhich the decision maker’s risk attitude can be implemented: the selection of the stochastic efficiencyconcept to be used during a decision analysis. We suggest representing the risk attitude as a conflictbetween two poles: risk neutral attitude, associated with best expectations, and risk aversion attitude,associated with a lower uncertainty. The Extended Goal Programming formulation has inspired theparameter that is introduced in a new risk attitude formulation. This parameter reflects the trade-offbetween the two classical poles with respect to risk attitude. Thus, we have produced a new stochasticefficiency concept that we call Compromise Efficiency.

Información de financiación

Financiadores

Referencias bibliográficas

  • Cross, M.; Ng, S.K.; Scuffham, P. Trading Health for Wealth: The Effect of COVID-19 Response Stringency. Int. J. Environ. Res. Public Health 2020, 17, 8725. [Google Scholar] [CrossRef] [PubMed]
  • Hajek, A.; Kretzler, B.; König, H.-H. Multimorbidity, Loneliness, and Social Isolation. A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8688. [Google Scholar] [CrossRef]
  • Naumann, E.; Möhring, K.; Reifenscheid, M.; Wenz, A.; Rettig, A.; Lehrer, R.; Krieger, U.; Juhl, S.; Friedel, S.; Fikel, M.; et al. COVID-19 policies in Germany and their social, political, and psychological consequences. Eur. Policy Anal. 2020, 6, 191–202. [Google Scholar] [CrossRef]
  • Spitale, G. COVID-19 and the ethics of quarantine: A lesson from the Eyam plague. Med. Health Care Philos. 2020, 23, 603–609. [Google Scholar] [CrossRef] [PubMed]
  • Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Fan, J. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 2020, 395, 945–947. [Google Scholar] [CrossRef]
  • Garre-Olmo, J.; Turró-Garriga, O.; Martí-Lluchad, R.; Zacarías-Pons, L.; Alves-Cabratosa, L.; Serrano-Sarbosa, D.; Vilalta-Franch, J.; Ramos, R. Changes in lifestyle resulting from confinement due to COVID-19 and depressive symptomatology: A cross-sectional a population-based study. Compr. Psychiatry 2021, 104, 152214. [Google Scholar] [CrossRef] [PubMed]
  • Medrano, M.; Cadenas-Sánchez, C.; Oses, M.; Arenaza, L.; Amasene, M.; Labayen, I. Changes in lifestyle behaviours during the COVID-19 confinement in Spanish children: A longitudinal analysis from the MUGI project. Pediatr. Obes. 2020, 16, e12731. [Google Scholar] [CrossRef]
  • Gutjahr, W.J.; Pichler, A. Stochastic multi-objective optimization: A survey on non-scalarizing methods. Ann. Oper. Res. 2016, 236, 475–499. [Google Scholar] [CrossRef]
  • Clemen, R.T. Making Hard Decisions; Duxbury Press: Pacific Grove, CA, USA, 1996. [Google Scholar]
  • Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–292. [Google Scholar] [CrossRef][Green Version]
  • Brunette, M.; Jacob, J. Risk aversion, prudence and temperance: An experiment in gain and loss. Res. Econ. 2019, 73, 174–189. [Google Scholar] [CrossRef]
  • Hurwicz, L. The Generalised Bayes Minimax Principle: A Criterion for Decision Making Under Uncertainty. Cowles Comm. Discuss. Pap. 1951, 355, 1950. [Google Scholar]
  • González Pachón, J.; Romero, C. Aggregation of ordinal and cardinal preferences: A framework based on distance functions. J. Multi-Criteria Decis. Anal. 2009, 15, 79–85. [Google Scholar] [CrossRef]
  • González Pachón, J.; Romero, C. The design of socially optimal decisions in a consensus scenario. Omega 2011, 39, 179–185. [Google Scholar] [CrossRef]
  • Ben Abdelaziz, F. L’efficacité en programmation multi-objectifs stochastique. Ph.D. Thesis, Université de Laval, Québec, QC, Canada, 1992. [Google Scholar]
  • Caballero, R.; Cerdá, E.; Muñoz, M.M.; Rey, L.; Stancu-Minasian, I.M. Efficient Solution Concepts and their relations in Stochastic Multiobjective Programming. J. Optim. Theory Appl. 2001, 110, 53–74. [Google Scholar] [CrossRef][Green Version]
  • Romero, C. Extended Lexicographic Goal Programming: A Unifying Approach. Omega 2001, 21, 63–71. [Google Scholar] [CrossRef]
  • Zhou, F.; Chen, T.-Y. An extended Pythagorean fuzzy VIKOR method with risk preference and a novel generalized distance measure for multicriteria decisionmaking problems. Neural Comput. Appl. 2021. [Google Scholar] [CrossRef]
  • Fu, B.; Li, X.; Scott, J.; He, W. A new framework to address challenges in quantitative benefit-risk assessment for medical products. Contemp. Clin. Trials 2020, 8725, 106073. [Google Scholar] [CrossRef]
  • Liu, S.; Vicente, L.N. The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning. Ann. Oper. Res. 2001. [Google Scholar] [CrossRef]
  • Nabavi, S.S.; Souzban, M.; Safi, M.R.; Sarmast, Z. Solving fuzzy stochastic multi-objective programming problems based on a fuzzy inequality. Iran. J. Fuzzy Syst. 2020, 17, 5, 43–52. [Google Scholar]
  • Ben Abdelaziz, F.; Colapinto, C.; La Torre, D.; Liuzzi, D. A stochastic dynamic multiobjective model for sustainable decision making. Ann. Oper. Res. 2020, 293, 539–556. [Google Scholar] [CrossRef]
  • Stancu-Minasian, I.; Tigan, S. The vectorial minimum risk problem. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 25–27 October 1984; pp. 321–328. [Google Scholar]
  • Markowitz, H.M. Portfolio Selection: Efficient Diversification of Investments; Cowles Foundation for Research in Economics at Yale University: New Haven, CT, USA, 1959; pp. 32–58. [Google Scholar]
  • Ehrgott, M. Multicriteria Optimization, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–96. [Google Scholar]
  • Romero, C. Handbook of Critical Issues in Goal Programming; Pergamon Press: Oxford, UK, 1991. [Google Scholar]
  • Yu, P.L. A class of solutions for group decission problems. Univ. Rochester. Manag. Sci. 1973, 19, 936–946. [Google Scholar]
  • Charnes, A.; Cooper, W.W. Goal Programming and multiple objective optimization—Part 1. Eur. J. Oper. Res. 1977, 1, 39–54. [Google Scholar] [CrossRef]
  • Ignizio, J.P. A review of goal programming: A tool for multiobjective analysis. J. Oper. Res. Soc. 1978, 27, 1109–1119. [Google Scholar] [CrossRef]
  • Jones, D.; Tamiz, M. Practical Goal Programming; Springer: New York, NY, USA, 2010. [Google Scholar]
  • Jones, D.; Tamiz, M. Goal programming and Pareto efficiency. J. Inf. Optim. Sci. 1996, 17, 1–17. [Google Scholar]
  • González Pachón, J.; Romero, C. Bentham, Marx and Rawls ethical principles: In search for a compromise. Omega 2016, 62, 47–51. [Google Scholar