Pre-service Secondary Teachers’ Mathematical Pedagogical Content Knowledge Self-concept related to their Content Knowledge of Functions and Students

  1. Sintema, Edgar John
  2. Marbán, José M.
Revista:
International Electronic Journal of Mathematics Education

ISSN: 1306-3030

Año de publicación: 2020

Volumen: 15

Número: 3

Páginas: em0598

Tipo: Artículo

DOI: 10.29333/IEJME/8327 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Electronic Journal of Mathematics Education

Referencias bibliográficas

  • Aksu, Z., & Kul, Ü. (2016). Exploring Mathematics Teachers’ Pedagogical Content Knowledge in the Context of Knowledge of Students. Journal of Education and Practice, 7(30), 35-42.
  • Alrwaished, N., Alkandari, A., & Alhashem, F. (2017). Exploring In- and Pre-Service Science and Mathematics Teachers’ Technology, Pedagogy, and Content Knowledge (TPACK): What Next? Eurasia Journal of Mathematics, Science and Technology Education, 13(9), 6113-6131. https://doi.org/10.12973/eurasia.2017.01053a
  • Aziz, T. A., & Kurniasih, M. D. (2019). External representation flexibility of domain and range of function. Journal on Mathematics Education, 10(1), 143-156. https://doi.org/10.22342/jme.10.1.5257.143-156
  • Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
  • Bates, A. B., Latham, N., & Kim, J. A. (2011). Linking preservice teachers’ mathematics Self‐Efficacy and mathematics teaching efficacy to their mathematical performance. School Science and Mathematics, 111(7), 325-333. https://doi.org/10.1111/j.1949-8594.2011.00095.x
  • Beswick, K., & Goos, M. (2012). Measuring Pre-Service Primary Teachers’ Knowledge for Teaching Mathematics. Mathematics Teacher Education and Development, 14(2), 70-90.
  • Blömeke, S., Busse, A., Kaiser, G., König, J., & Suhl, U. (2016). The relation between content-specific and general teacher knowledge and skills. Teaching and Teacher Education, 56, 35-46. https://doi.org/10.1016/j.tate.2016.02.003
  • Carlson, J., & Daehler, K. R. (2019). The refined consensus model of pedagogical content knowledge in science education. In Repositioning pedagogical content knowledge in teachers’ knowledge for teaching science (pp. 77-92). Springer, Singapore. https://doi.org/10.1007/978-981-13-5898-2_2
  • Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.
  • da Costa, D. A. (2020). Knowledge to Teach and Knowledge for Teaching in Teacher Education Research. Pedagogical Research, 5(3), em0059. https://doi.org/10.29333/pr/7936
  • de Sousa Magalhaes, S., Fernandes Malloy-Diniz, L., & Cavalheiro Hamdan, A. (2012). Validity convergent and reliability test-retest of the rey auditory Verbal Learning Test. Clinical Neuropsychiatry
  • Dorko, A., & Weber, E. (2014). Generalising calculus ideas from two dimensions to three: How multivariable calculus students think about domain and range. Research in Mathematics Education, 16(3), 269-287. https://doi.org/10.1080/14794802.2014.919873
  • Duran, M., & Usak, M. (2015). Examining the pedagogical content knowledge of science teachers who have different teaching experience about acids and bases. Oxidation Communications, 38(1A), 540-557.
  • Elia, I., Panaoura, A., Eracleous, A., & Gagatsis, A. (2007). Relations between secondary pupils’ conceptions about functions and problem solving in different representations. International Journal of Science and Mathematics Education, 5(3), 533-556. https://doi.org/10.1007/s10763-006-9054-7
  • Elmahdi, I., & Fawzi, H. (2019). Pre-service Teachers’ Perception of Readiness to Teach in Light of Teachers’ Standards. American Journal of Educational Research, 7(4), 304-308.
  • Even, R. (1990). Subject-matter knowledge for teaching and the case of functions. Education studies in mathematics education, 21(6), 521-544. https://doi.org/10.1007/BF00315943
  • Even, R. (1992). The inverse function: Prospective teachers’ use of “undoing”. International Journal of Mathematical Education in Science and Technology, 23(4), 557-562. https://doi.org/10.1080/0020739X.1992.10715689
  • Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: Prospective secondary teachers and the function concept. Journal for research in mathematics education, 24(2), 94-116. https://doi.org/10.2307/749215
  • Fennema, E., & Franke, M. L. (1992). Teachers’ knowledge and its impact. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 147- 164). New York: Macmillan.
  • Fornell, C. G., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 38-50. https://doi.org/10.1177/002224378101800104
  • Gagatsis, A., & Shiakalli, M. (2004). Ability to translate from one representation of the concept of a function to another and mathematical problem solving. An International Journal of Experimental Educational Psychology, 24(5), 645-957. https://doi.org/10.1080/0144341042000262953
  • Garson, G. D. (2016). Partial least squares: regression & structural equation models Asheboro. North Carolina: Statistical Associates Publishing.
  • Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK Summit. In A. Berry, P. Friedrichsen, & J. Loughram (Eds.), Re-examining pedagogical content knowledge in Science Education (pp. 28-42). New York: Routledge.
  • Gold, A. H., Malhotra, A., & Sergas, A. H. (2001). Knowledge management: an organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214. https://doi.org/10.1080/07421222.2001.11045669
  • Gresham, G. (2009). An examination of mathematics teacher efficacy and mathematics anxiety in elementary pre-service teachers. The Journal of Classroom Interaction, 22-38.
  • Hair J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The use of partial least squares structural equation modeling in strategic management research: a review of past practices and recommendations for future applications, Long Range planning, 5(6), 320-340. https://doi.org/10.1016/j.lrp.2012.09.008
  • Hair Jr, J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM). European Business Review. https://doi.org/10.1016/j.jfbs.2014.01.002
  • Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of Academy of Marketing Science, 42(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
  • Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing, Advances in International Marketing, 20, 277-320. https://doi.org/10.1108/S1474-7979(2009)0000020014
  • Hine, G., & Thai, T. (2019). Pre-service mathematics teachers’ self-perceptions of readiness to teach secondary school mathematics. Mathematics Teacher Education and Development, 21(2), 64-86.
  • Hitt, F. (1998). Difficulties in the articulation of different representations linked to the concept of a function. The Journal of Mathematics Behavior, 17(1), 123-134. https://doi.org/10.1016/S0732-3123(99)80064-9
  • Hu, L. T., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification, Psychological Methods, 3(4), 424. https://doi.org/10.1037/1082-989X.3.4.424
  • Huang, R., & Kulm, G. (2012). Prospective middle grade mathematics teachers’ knowledge of algebra for teaching. The Journal of Mathematics Behavior, 31(4), 417-430. https://doi.org/10.1016/j.jmathb.2012.06.001
  • Jeffery, T. D., Hobson, L. D., Conoyer, S. J., Miller, K. E., & Leach, L. F. (2018). Examining EC-6 Pre-Service Teachers’ Perceptions of Self-Efficacy in Teaching Mathematics. Issues in the Undergraduate Mathematics Preparation of School Teachers, 5.
  • Kim, S. (2018). Technological, Pedagogical, and Content Knowledge (TPACK) and Beliefs of Pre-service Secondary Mathematics Teachers: Examining the Relationships. Eurasia Journal of Mathematics, Science and Technology Education, 14(10), em1590. https://doi.org/10.29333/ejmste/93179
  • Kline, R. B. (2011). Principles and practice of structural equation modeling, 93rd ed), Guilford Press.
  • Kontorovich, I. (2017). Students’ confusions with reciprocal and inverse functions. International Journal of Mathematical Education in Science and Technology, 48(2), 278-284. https://doi.org/10.1080/0020739X.2016.1223361
  • Lee, Y., Capraro, R. M., & Capraro, M. M. (2018). Mathematics Teachers’ Subject Matter Knowledge and Pedagogical Content Knowledge in Problem Posing. International Electronic Journal of Mathematics Education, 13(2), 75-90. https://doi.org/10.12973/iejme/2698
  • Leinhardt, G., Zaslavsky, O., & Stein, M. S. (1990). Functions, graphs and graphing: Tasks, learning, and teaching. Review of Educational Research, 1, 1-64. https://doi.org/10.3102/00346543060001001
  • Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special?. Journal of teacher education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
  • Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In Examining pedagogical content knowledge (pp. 95-132). Springer, Dordrecht. https://doi.org/10.1007/0-306-47217-1_4
  • Malambo, P. (2016). Exploring Zambian mathematics student teachers’ content knowledge of functions and trigonometry for secondary schools (Doctoral dissertation), University of Pretoria.
  • Malambo, P., Van Putten, S., Botha, J. J., & Stols, G. H. (2019). Dysfunctional functions: the case of Zambian mathematics education students. Eurasia Journal of Mathematics, Science and Technology Education, 15(1), em1651. https://doi.org/10.29333/ejmste/99510
  • Marban, J. M., & Sintema, E. J. (2020). Pre-service secondary teachers’ of the function concept: A cluster analysis approach. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(1), 38-53. https://doi.org/10.23917/jramathedu.v5.i1.9703
  • Marks, R. (1990). Pedagogical content knowledge: From a mathematical case to a modified conception. Journal of teacher education, 41(3), 3-11. https://doi.org/10.1177/002248719004100302
  • Martínez-Planell, R., Gaisman, M. T., & McGee, D. (2015). On students’ understanding of the differential calculus of functions of two variables. The Journal of Mathematical Behavior, 38, 57-86. https://doi.org/10.1016/j.jmathb.2015.03.003
  • Matos, J. M. (2020). Construing Professional Knowledge of Secondary School Teachers of Mathematics: A Historical Perspective. Pedagogical Research, 5(3), em0058. https://doi.org/10.29333/pr/7898
  • Ministry of Education (2013). “O” level Mathematics Syllabus (Grades 10 t0 12), Lusaka, Zambia: Zambia Curriculum Development Centre.
  • Newton, K. J., Leonard, J., Evans, B. R., & Eastburn, J. A. (2012). Preservice elementary teachers’ mathematics content knowledge and teacher efficacy. School Science and Mathematics, 112(5), 289-299. https://doi.org/10.1111/j.1949-8594.2012.00145.x
  • Ohanian, R. (1990). Construction and validation of a measure celebrity endosers’ perceived expertise, trustworthiness, and attractiveness. Journal of advertising, 19(3), 39-52. https://doi.org/10.1080/00913367.1990.10673191
  • Ozgen, C. (2010). Pre-service secondary mathematics teachers’ pedagogical content knowledge of composite and inverse functions (Doctoral Dissertation), Middle East Technical University.
  • Ozkan, E. M., & Unal, H. (2009). Misconceptions in Calculus-1: Engineering students’ misconception in the process of finding domain of a function. Procedia Social and Behavioral Sciences, 1(1), 1792-1796. https://doi.org/10.1016/j.sbspro.2009.01.317
  • Polit, D. F., & Beck, C. T. (2004). Nursing research: Principles and methods (7th ed.) Philadelphia: Lippincott, Williams, & Wilkin.
  • Polit, D.F., Beck, C.T., & Owen, S.V. (2007). Is the CVI an acceptable indicator of content validity? Appraisa and recommendations. Research in Nursing & Health, 30, 459-467. https://doi.org/10.1002/nur.20199
  • Sánchez-Jiménez, E. (2020). The Methodology of Mathematics and the Emergence of a Proto Discipline. Pedagogical Research, 5(3), em0064. https://doi.org/10.29333/pr/8201
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
  • Shulman, L. S. (1987). Knowledge and Teaching: Foundations of the New Reforms. Harvard Educational Review, 57, 1-22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  • Sintema, E. J., Phiri, P. A., & Marban, J. M. (2018). Zambian mathematics pre-service secondary mathematics teachers’ knowledge of the function concept: Theoretical framework and a literature review with implications for Zambia. Journal of Global Research in Education and Social Sciences, 12(3), 133-147.
  • Teo T. S., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: an empirical study. Journal of Management Information Systems, 25(3), 99-132. https://doi.org/10.2753/MIS0742-1222250303
  • Ubah, I. J. A., & Bansilal, S. (2018). Pre-service mathematics teachers’ knowledge of mathematics for teaching: quadratic functions. Problems of Education in the 21st Century, Problems of Education in the 21st Century, 76(6), 847-863. https://doi.org/10.33225/pec/18.76.847
  • Usak, M., Ozden, M., & Eilks, I. (2011). A case study of beginning science teachers’ subject matter (SMK) and pedagogical content knowledge (PCK) of teaching chemical re action in Turkey. European Journal of Teacher Education, 34(4), 407-429. https://doi.org/10.1080/02619768.2011.592977
  • Usak, M., Ulker, R., Oztas, F., & Terzi, I. (2013). The Effects of Professors’ Pedagogical Content Knowledge on Elementary Teacher Candidates’ Attitude and Achievement Regarding Biology. The Anthropologist, 16(1-2), 251-261. https://doi.org/10.1080/09720073.2013.11891353
  • Wasserman, N. H. (2017). Making sense of abstract algebra: Exploring secondary teachers’ understanding of inverse functions in relation to its group structure. International Journal of Mathematical Education in Science and Technology, 19(3), 181-201. https://doi.org/10.1080/10986065.2017.1328635
  • Watson, A., Ayalon, M., & Lerman, S. (2018). Comparison of students’ understanding of functions in classes following English and Israel national curricula. Education Studies in Mathematics, 97(3), 255-272. https://doi.org/10.1007/s10649-017-9798-8
  • You, Z. (2010). Preservice teachers’ knowledge of linear functions within multiple representation modes (Doctoral dissertation), Texas A & M University.