Simulation of p-n junctions: Present and future challenges for technologies beyond 32 nm

  1. Pelaz, Lourdes 1
  2. Marqués, Luis A. 1
  3. Aboy, María 1
  4. Santos, Iván 1
  5. López, Pedro 1
  6. Duffy, Ray 1
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Journal:
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena

ISSN: 2166-2746 2166-2754

Year of publication: 2010

Volume: 28

Issue: 1

Pages: C1A1-C1A6

Type: Article

DOI: 10.1116/1.3231481 GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena

Abstract

Ion implantation continues being the dominant technique to introduce dopants in Si devices. With the device feature size in the nanometer scale, the accurate and detailed description of as-implanted dopant and damage profiles is becoming key as advanced annealing techniques are almost diffusionless. The demanding requirements for ultrashallow junction formation are stimulating the development of improved and detailed models for molecular implants and for the kinetics of amorphous damage. Additional challenges arise in the doping of advanced architectures, such as fin field effect transistors, because the introduction of highly tilted ions is quite inefficient and, in addition, the regrowth of amorphous regions in narrow structures is hampered by the slow regrowth at free interfaces and {111} planes. Atomistic simulations play a relevant role to provide the understanding for the development of simplified physically based models computationally more efficient.

Funding information

Project No. TEC2008-06069 and by Junta de Castilla y León under Project No. VA011A09

Funders

Bibliographic References

  • 10.1116/1.2790925
  • 10.1109/VLSIT.2004.1345387
  • 10.1557/PROC-765-D7.4
  • Goel N., Tech. Dig. - Int. Electron Devices Meet., 2008, pp. 363
  • 10.1016/j.mseb.2005.08.106
  • 10.1103/PhysRevB.39.5566
  • 10.1103/PhysRevB.47.7686
  • 10.1063/1.2743089
  • 10.1557/PROC-1070-E05-02
  • 10.1149/1.2085734
  • 10.1149/1.1393926
  • 10.1088/0022-3727/23/7/018
  • Yu G. M., Tech. Dig. - Int. Electron Devices Meet., 1998, pp. 717
  • 10.1103/PhysRevB.9.5008
  • Ziegler J. F., (1977), The Stopping and Range of Ions in Solids, 1
  • 10.1016/0168-583X(92)95562-6
  • 10.1016/0168-583X(94)00476-5
  • 10.1063/1.1424052
  • 10.1103/PhysRevB.54.16683
  • 10.1063/1.1652730
  • 10.1103/PhysRevB.74.174115
  • 10.1103/PhysRevB.74.201201
  • 10.1016/S1369-8001(00)00050-0
  • 10.1063/1.3110077
  • 10.1063/1.1808484
  • 10.1016/S1369-8001(03)00065-9
  • 10.1016/S0168-583X(00)00683-2
  • 10.1063/1.333958
  • 10.1063/1.2749186
  • 10.1007/978-3-7091-0597-9
  • 10.1063/1.1904159
  • 10.1109/TED.2006.888676
  • 10.1063/1.1751225
  • 10.1016/j.mseb.2005.08.079
  • 10.1103/PhysRevLett.100.155901
  • 10.1103/PhysRevB.69.045204
  • 10.1063/1.1814792
  • Duffy R., (2005), Mater. Res. Soc. Symp. Proc., 810, pp. 437
  • 10.1016/j.apsusc.2004.03.184
  • 10.1063/1.2199047
  • 10.1103/PhysRevLett.93.245901
  • 10.1063/1.2969055
  • 10.1109/TED.2003.811412
  • 10.1016/j.sse.2008.04.018
  • van Dal M. J. H., Dig. Tech. Pap. - Symp. VLSI Technol., 2007, pp. 110
  • 10.1016/j.sse.2007.02.003
  • 10.1109/TNANO.2003.820783
  • Takeuchi S., (2008), 802, pp. 2432
  • Sasaki Y., Tech. Dig. - Int. Electron Devices Meet., 2008, pp. 917
  • 10.1116/1.2816925
  • Pelaz L., Tech. Dig. - Int. Electron Devices Meet., 2008, pp. 535
  • Vandervorst W., (2008), 1066, pp. 446
  • 10.1557/PROC-1070-E02-01
  • 10.1116/1.2348726
  • 10.1063/1.1586990
  • 10.1063/1.325397
  • 10.1116/1.2823063