Relativistic versus Newtonian Frames

  1. Pascual-Sánchez, J.-F. 1
  2. San Miguel, A. 1
  3. Vicente, F. 1
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Revista:
Positioning

ISSN: 2150-850X 2150-8526

Ano de publicación: 2013

Volume: 04

Número: 01

Páxinas: 109-114

Tipo: Artigo

DOI: 10.4236/POS.2013.41011 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Positioning

Resumo

Only a causal class among the 199 Lorentzian ones, which do not exists in the Newtonian space-time, is privileged to construct a generic, gravity free and immediate (non retarded) relativistic positioning system. This is the causal class of the null emission coordinates. Emission coordinates are defined and generated by four emitters broadcasting their proper times. The emission coordinates are covariant (frame independent) and hence valid for any user. Any observer can obtain the values of his (her) null emission coordinates from the emitters which provide him his (her) position and trajectory.

Referencias bibliográficas

  • N. Ashby, “Relativity in the Global Positioning System,” Living Reviews in Relativity, Vol. 6, 2003, p. 1.
  • 10.1002/andp.200610229
  • J.-F. Pascual-Sánchez, “The Relativistic Framework of Positioning Systems,” First Colloquium on Scientific and Fundamental Aspects of the Galileo Program, 2007, arXiv:0710.1282.
  • B. Coll, “Reference Frames and Gravitomagnetism,” World Scientific, Singapore, 2001, p. 53.
  • B. Coll and J. A. Morales, “199 Causal Classes of Space-Time Frames,” International Journal of Theoretical Physics, Vol. 31, 1992, p. 1045.
  • B. Coll, “Physical Relativistic Frames,” Proc. Jour. Sys. Ref. Spat. Temp., Brussels, ed N. Capitaine, Observatoire de Paris, 2001, p. 169.
  • B. Coll, J. J. Ferrando and J. A. Morales, “Four Causal Classes of Newtonian Frames,” Foundations of Physics, Vol. 39, 2009, p. 1280.
  • A. Trautman, “Sur la Théorie Newtonienne de la Gravitation,”Comptes Rendus de l'Académie des Sciences, Vol. 257, 1963, p. 617.
  • 10.1103/PhysRevD.65.044017
  • 10.1103/PhysRevD.65.044018
  • 10.1103/PhysRevD.73.084017
  • A. Tarantola and B. Coll, “Using Pulsars to Define Space-Time Coordinates,” 2009, arXiv:0905.4121.
  • M. L. Ruggiero, E. Capolongo and A. Tartaglia, “Pulsars as Celestial Beacons to Detect the Motion of the Earth,” International Journal of Modern Physics, Vol. 20, No. 6, 2011, pp. 1025-1038.
  • P. Graven, et al., “XNAV for Deep Space Navigation,” Proceedings of 31st Annual AAS Guidance and Control Conference, AAS 08-054, 2008.
  • 10.1088/0264-9381/23/24/012
  • A. Tarantola, L. Klimes, J. M. Pozo and B. Coll, “Gravimetry, Relativity, and the Global Navigation Satellite Systems,” 2009, arXiv:0905.3798.
  • 10.1103/PhysRevD.74.104003
  • 10.1088/0264-9381/23/10/019
  • 10.1088/0264-9381/27/6/065013
  • 10.1088/0264-9381/25/20/205011