Determinants and Tools to Evaluate the Ecological Sustainability of Using Forest Biomass as an Alternative Energy Source

  1. Blanco, Juan A.
  2. Candel-Pérez, David
  3. Lo, Yueh-Hsin
Book:
Forest Biomass and Carbon

Year of publication: 2018

Type: Book chapter

DOI: 10.5772/INTECHOPEN.76005 GOOGLE SCHOLAR lock_openOpen access editor

Sustainable development goals

Abstract

Forest biomass, the most ancient of fuels, is again in the center of renewable energy production. This chapter provides an introductory view of the main factors that condition the ecological sustainability of this energy source. The basic concepts of ecological sustainability, ecological rotation, and ecological thresholds (among others) are presented. The state of the art on approaches to assess the sustainability of forest biomass production for heat and electricity is discussed, and tools available for decision-makers to evaluate the sustainability of forest biomass production and management are described. This chapter then describes the main advantages and drawbacks of forest certification, growth and yield tables, and ecological models in relationship to their use in sustainable forest management for biomass and energy production.

Bibliographic References

  • Jagger P, Kittner N. Deforestation and biomass fuel dynamics in Uganda. Biomass and Bioenergy. 2017;105:1-9. DOI: 10.1016/j.biombioe.2017.06.005
  • Kukrety S, Wilson DC, DÁmato AW, Becker DR. Assessing sustainable forest biomass potential and bioenergy implications for the northern Lake States region, USA. Biomass and Bioenergy. 2015;81:167-176. DOI: 10.1016/j.biombioe.2015.06.026
  • Rothe A, Moroni M, Neyland M, Wilnhammer M. Current and potential use of forest biomass for energy in Tasmania. Biomass and Bioenergy. 2015;80:162-172. DOI: 10.1016/j.biombioe.2015.04.021
  • Springer N, Kaliyan N, Bobick B, Hill J. Seeing the forest for the trees: How much woody biomass can the Midwest United States sustainably produce? Biomass and Bioenergy. 2017;105:266-277. DOI: 10.1016/j.biombioe.2017.05.011
  • Suzuki K, Tsuji N, Shirai Y, Hassan MA, Osaki M. Evaluation of biomass energy potential towards achieving sustainability in biomass energy utilization in Sabah, Malaysia. Biomass and Bioenergy. 2017;97:149-154. DOI: 10.1016/j.biombioe.2016.12.023
  • Blanco JA. Usando la biomasa forestal como una fuente de energía sostenible. Pamplona: Universidad Pública de Navarra; 2016. 208 p. ISBN 978-84-9769-302-8
  • Lamers P, Thiffault E, Paré D, Junginger M. Feedstock specific environmental risk levels related to biomass extraction for energy from boreal and temperate forests. Biomass and Bioenergy. 2013;55:212-226. DOI: 10.1016/j.biombioe.2013.02.002
  • Blanco JA, Imbert JB, Castillo FJ. Adaptación al cambio climático en pinares pirenaicos: controlando la densidad del rodal según el tipo de clima. In: Herrero A, Zavala MA, editors. Los Bosques y la Biodiversidad frente al Cambio Climático: Impactos, Vulnerabilidad y Adaptación en España. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente; 2015. pp. 565-572
  • Blanco JA, Imbert JB, Castillo FJ. Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry. 2011;106:397-414. DOI: 10.1007/s10533-010-9518-2
  • Jang W, Keyes CR, Page-Dumroese D. Recovery and diversity of the forest shrub community 38 years after biomass harvesting in the northern Rocky Mountains. Biomass and Bioenergy. 2016;92:88-97. DOI: 10.1016/j.biombioe.2016.06.009
  • Blanco JA, González E. The legacy of forest management in tropical forests: Analysis of its long-term influence with ecosystem-level model. Forest Systems. 2010;19(2):249-262. DOI: 10.5424/fs/2010192-01319
  • Kimmins JP. Sustained yield, ecological rotation, and timber mining: A British Columbia view. Forestry Chronicle. 1974;50:27-31. DOI: pdf/10.5558/tfc50027-1
  • Bosch R, Van de Pol M, Philp J. Define biomass sustainability. Nature. 2015;523:526-527. DOI: 10.1038/523526a
  • Mai-Moulin T, Armstrong S, Van Dam J, Junginger M. Toward a harmonization of national sustainability requirements and criteria for solid biomass. Biofuels, Bioproducts & Biorefining. 2017. DOI: 10.1002/bbb.182 (in press)
  • WCED. Our Common Future. World Commission on Environment and Development. Oxford: Oxford University Press; 1987. 300 p. Available from: http://www.un-documents.net/our-common-future.pdf [Accessed: Jan 3, 2018]
  • Boyle JR, Tappeiner JC, Waring RH, Tattersall Smith C. Sustainable Forestry: Ecology and Silviculture for Resilient Forests, Reference Module in Earth Systems and Environmental Sciences. 1st ed. Amsterdam: Elsevier; 2016. 9 p. DOI: 10.1016/B978-0-12-409548-9.09761-X
  • Holden E, Linnerud K, Banister D. Sustainable development: Our common future revisited. Global Environmental Change. 2014;26:130-139. DOI: 10.1016/j.gloenvcha.2014.04.006
  • Groffman PM, Baron JS, Blett T, Gold AJ, Goodman I, Gunderson LH, et al. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems. 2006;9(1):1-13. DOI: 10.1007/s10021-003-0142-z
  • Fath BD. Quantifying economic and ecological sustainability. Ocean and Coastal Management. 2015;108:13-19. DOI: 10.1016/j.ocecoaman.2014.06.020
  • Hall D, Moss PA. Biomass for energy in developing countries. GeoJournal. 1983;7:5-14
  • World Energy Council. World energy resources. In: Bioenergy. London, UK: World Energy Council; 2016
  • Leblois A, Damette O, Wolfersberger J. What has driven deforestation in developing countries since the 2000s? Evidence from new remote-sensing data. World Development. 2017;92:82-102. DOI: 10.1016/j.worlddev.2016.11.012
  • Janowiak MK, Webster CR. Promoting ecological sustainability in woody biomass harvesting. Journal of Forestry. 2010;108(1):16-23
  • Mola-Yudego B, Arevalo J, Díaz-Yáñez O, Dimitriou I, Haapala A, Ferraz Filho AC, Selkimäki M, Valbuena R. Wood biomass potentials for energy in northern Europe: Forest or plantations? Biomass and Bioenergy. 2017;106:95-103. DOI: 10.1016/j.biombioe.2017.08.021
  • Blanco JA, Dubois D, Littlejohn D, Flanders D, Robinson P, Moshofsky M, Welham C. Fire in the woods or fire in the boiler: Implementing rural district heating to reduce wildfire risks in the forest-urban interface. Process Safety and Environmental Protection. 2015;96:1-13. DOI: 10.1016/j.psep.2015.04.002
  • Gustavsson L, Haus S, Lundblad M, Lundström A, Ortiz CA, Sathre R, Le Truong N, Wikberg PE. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renewable and Sustainable Energy Reviews. 2017;67:612-624. DOI: 10.1016/j.rser.2016.09.056
  • Koponen K, Sokka L, Salminen O, Sievänen R, Pingoud K, Ilvesniemi H, Routa J, Ikonen T, Koljonen T, Alakangas E, Asikainen A, Sipilä K. Sustainability of forest energy in Northern Europe. VTT Technology. 2015;237:1-100. Available from: http://www.vtt.fi/inf/pdf/technology/2015/T237.pdf [Accessed: Jan 3, 2018]
  • Truong N, Gustavsson L. Climate effects of woody biomass and fossil fuel use in stand-alone and integrated energy systems. In: Proceedings of Eceee 2017 Summer Study; 29 May–3 June 2017; Presqu'île de Giens. Presqu'île de Giens, Eceee; 2017. pp. 911-920. Available from: https://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2017/4-mobility-transport-and-smart-and-sustainable-cities/climate-effects-of-woody-biomass-and-fossil-fuel-use-in-stand-alone-and-integrated-energy-systems/ [Accessed: Jan 3, 2018]
  • Blanco JA, Dubois D, Littlejohn D, Flanders D, Robinson P, Moshofsky M, Welham C. Soil organic matter: A sustainability indicator for wildfire control and bioenergy production in the urban/forest interface. Soil Science Society of America Journal. 2014;78(S1):S105-S117. DOI: 10.2136/sssaj2013.06.0214nafsc
  • Tuomasjukka D, Athanassiadis D, Vis M. Threefold sustainability impact assessment method comparison for renewable energy value chains. International Journal of Forest Engineering. 2017;28(2):116-122. DOI: 10.1080/14942119.2017.1318549
  • Thiffault E, St-Laurent Samuel A, Serra R. Forest Biomass Harvesting: Best Practices and Ecological Issues in the Canadian Boreal Forest. Quebéc: Natural Resources Canada, Canadian Forest Service; 2015. 83 p. ISBN 978-1-100-25725-9. Available from: http://publications.gc.ca/collections/collection_2015/rncan-nrcan/Fo114-16-2015-eng.pdf [Accessed: Jan 3, 2018]
  • Stupak I, Lattimore B, Titus BD, Smith CT. Criteria and indicators for sustainable forest fuel production and harvesting: A review of current standards for sustainable forest management. Biomass and Bioenergy. 2011;35:3287-3308. DOI: 10.1016/j.biombioe.2010.11.032
  • Kimmins JP, Blanco JA, Seely B, Welham C, Scoullar K. Forecasting Forest Futures: A Hybrid Modelling Approach to the Assessment of Sustainability of Forest Ecosystems and their Values. London: Earthscan; 2010. ISBN: 978-1-84407-922-3
  • Welham C, Blanco JA, Seely B, Bampfylde C. Oil sands reclamation and the projected development of wildlife habitat attributes. In: Vitt DH, Bhatti JS, editors. Reclamation and Restoration of Boreal Ecosystems: Attaining Sustainable Development. Cambridge: Cambridge University Press; 2012. pp. 336-356
  • Gaudreault C, Wigley TB, Margni M, Verschuyl J, Vice K, Titus B. Addressing biodiversity impacts of land use in life cycle assessment of forest biomass harvesting. WIREs Energy and Environment. 2016;5:670-683. DOI: 10.1002/wene.211
  • Galik C, Abt RC. Sustainability guidelines and forest market response: An assessment of European Union pellet demand in the southeastern United States. Global Change Biology. Bioenergy. 2016;8:658-669. DOI: 10.1111/gcbb.12273
  • Scarlat N, Dallemand JF. Recent developments of biofuels/bioenergy sustainability certification: A global overview. Energy Policy. 2011;39:1630-1646. DOI: 10.1016/j.enpol.2010.12.039
  • Sikkema R, Junginger M, Van Dam J, Stagemen G, Durrant D, Faaij A. Legal harvesting, sustainable sourcing and cascade use of wood for bioenergy: Their coverage through existing certification frameworks for sustainable forest management. Forests. 2014;5:2163-2211. DOI: 10.3390/f5092163
  • Eufrade HJ Jr, de Melo RX, Sartori MMP, Guerra SPS, Ballarin AW. Sustainable use of eucalypt biomass grown on short rotation coppice for bioenergy. Biomass and Bioenergy. 2016;90:15-21. DOI: 10.1016/j.biombioe.2016.03.037
  • Blanco JA, Zavala MA, Imbert JB, Castillo FJ. Sustainability of forest management practices: Evaluation through a simulation model of nutrient cycling. Forest Ecology and Management. 2005;213(1–3):209-228. DOI: 10.1016/j.foreco.2005.03.042
  • Thiffault E, Hannam KD, Paré D, Titus BD, Hazlett PW, Maynard DG, Brais S. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—A review. Environmental Reviews. 2011;19:278-309. DOI: 10.1139/a11-009
  • Blanco JA. Forests may need centuries to recover their original productivity after continuous intensive management: An example from Douglas-fir. Science of the Total Environment. 2012;437:91-103. DOI: 10.1016/j.scitotenv.2012.07.082
  • Ruiz-Benito P, García-Valdés R. Inventarios forestales para el estudio de patrones y procesos en Ecología. Ecosistemas: Revista Cietifica y Tecnica de Ecologia y Medio Ambiente. 2016;5(3):1-5. DOI: 10.7818/ECOS.2016.25-3.01
  • Blanco JA, González de Andrés E, San Emeterio L, Lo YH. Modelling mixed forest stands: Methodological challenges and approaches. In: Lek S, Park YS, Baehr C, Jorgensen SE, editors. Advanced Modelling Techniques Studying Global Changes in Environmental Sciences. 1st ed. Amsterdam: Elsevier; 2015. pp. 187-213. DOI: 10.1016/B978-0-444-63536-5.00009-0
  • Chitawo ML, Chimphango AFA, Peterson S. Modelling sustainability of primary forest residues-based bioenergy system. Biomass and Bioenergy. 2018;108:90-100. DOI: 10.1016/j.biombioe.2017.10.022
  • Lo YH, Blanco JA, Kimmins JP, Seely B, Welham C. Linking climate change and forest ecophysiology to project future trends in tree growth: A review of forest models. In: Blanco JA, Kheradmand H, editors. Climate Change—Research and Technology for Adaptation and Mitigation. Rijeka: InTech; 2011. pp. 63-86. DOI: 10.5772/24914
  • Lo YH, Blanco JA, Welham C, Wang M. Maintaining ecosystem function by restoring forest biodiversity: Reviewing decision-support tools that link biology, hydrology and geochemistry. In: Lo YH, Blanco JA, Roy S, editors. Biodiversity in Ecosystems: Linking Structure and Function. 1st ed. Rijeka: InTech; 2015. pp. 143-167. DOI: 10.5772/59390
  • Nightingale JM, Phinn SR, Held AA. Ecosystem process models at multiple scales for mapping tropical forest productivity. Progress in Physical Geography. 2004;28:241-281. DOI: 10.1191/0309133304pp411ra
  • Piao S, Sitch S, Ciis P, Friedlingstein P. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology. 2013;19:2117-1232. DOI: 10.1111/gcb.12187
  • Vergutz L, Manzoni S, Porporato A, Ferreira Novais R, Jackson RB. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs. 2012;82:205-220. DOI: 10.1890/11-0416.1
  • Sardans J, Peñuelas J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially P, to leaves and wood. Global Ecology and Biogeochemistry. 2013;22:494-507. DOI: 10.1111/geb.12015
  • Blanco JA, Wei X, Jiang H, Jie CY, Xin ZH. Enhanced nitrogen deposition in south-east China could partially offset negative effects of soil acidification on biomass production of Chinese fir plantations. Canadian Journal of Forest Research. 2012;42:437-450
  • Forrester DI, Tang X. Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using 3-PG model. Ecological Modelling. 2016;319:233-254. DOI: 10.1016/j.ecolmodel.2015.07.010
  • Kimmins JP, Mailly D, Seely B. Modelling forest ecosystem net primary production: The hybrid simulation approach used in FORECAST. Ecological Modelling. 1999;122:195-224. DOI: 10.1016/S0304-3800(99)00138-6
  • Kimmins JP, Blanco JA, Seely B, Welham C, Scoullar K. Complexity in modeling forest ecosystems: How much is enough? Forest Ecology and Management. 2008;256:1646-1658. DOI: 10.1016/j.foreco.2008.03.011
  • Mäkelä A. Hybrid models of forest stand growth and production. In: Dykstra DP, Monserud RA, editors. Forest Growth and Timber Quality: Crown Models and Simulation Methods for Sustainable Forest Management. Proceedings PNW-GTR; Aug 7–10, 2007, Portland. Portland: USDA; 2009. pp. 43-47. DOI: 10.2737/PNW-GTR-791
  • Seely B, Welham C, Scoullar K. Application of a hybrid forest growth model to evaluate climate change impacts on productivity, nutrient cycling and mortality in a montane forest ecosystem. PLoS One. 2015;10:e0135034. DOI: 10.1371/journal.pone.0135034
  • Bi J, Blanco JA, Kimmins JP, Ding Y, Seely B, Welham C. Yield decline in Chinese Fir plantations: A simulation investigation with implications for model complexity. Canadian Journal of Forest Research. 2007;37:1615-1630
  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nature Communications. 2014;5:4967. DOI: 10.1038/ncomms5967
  • Sikkema R, Faaij APC, Ranta T, Heinimö J, Gerasimov YY, Karjalainen T, Nabuurs GJ. Mobilization of biomass for bioenergy from boreal forests in Finland & Russia under present sustainable forest management certification and new sustainability requirements for solid biofuels. Biomass and Bioenergy. 2014;71:23-36. DOI: 10.1016/j.biombioe.2013.11.010
  • Komarov AS, Shanin VN. Comparative analysis of the influence of climate change and nitrogen deposition on carbon sequestration in forest ecosystems in European Russia: Simulation modelling approach. Biogeosciences. 2012;9:4757-4770. DOI: 10.5194/bg-9-4757-2012
  • Purkus A, Röder M, Gawel E, Thrän D, Thornley P. Handling uncertainty in bioenergy policy design—A case study analysis of UK and German bioelectricity policy instruments. Biomass and Bioenergy. 2015;79:64-79. DOI: 10.1016/j.biombioe.2015.03.029