Límites y potenciales tecnosostenibles de la energíauna mirada heterodoxa y sistémica

  1. de Castro, Carlos 1
  1. 1 Departamento de Física Aplicada. Universidad de Valladolid
Journal:
Arbor: Ciencia, pensamiento y cultura

ISSN: 0210-1963

Year of publication: 2023

Volume: 199

Issue: 807

Type: Article

DOI: 10.3989/ARBOR.2023.807004 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Arbor: Ciencia, pensamiento y cultura

Abstract

Non-renewable energy sources (fossil and nuclear) are limited, both because of their finiteness and because of the ecological and social harm they cause. Renewable energy sources have very large flows in the biosphere. Nevertheless, the technological systems that capture them are not renewable and thus also have technological, ecological and social limitations. Although a good part of the scientific literature estimates that these limiting factors are small compared to the political and economic ones, it is shown here that this literature has been over-estimating the techno-sustainable capacity obtainable throughout this century, largely due to an implicit techno-optimism and a lack of systemic thinking. This potential could be on the order of between half and a quarter of current energy use, which given the necessary transition to renewable sources due to environmental problems points to a strong decrease in the energy matrix that sustains our societies on a global scale.

Bibliographic References

  • ACS, Chemistry for Life (2019). Endangered elements. https://www.acs.org/greenchemistry/research-innovation/endangered-elements.html American Chemical Society.
  • Alonso-Fradejas, Alberto (2021). ‘Leaving no one unscathed’ in sustainability transitions: the life purging agro-extractivism of corporate renewables. Journal of Rural Studies 81: 127-138.
  • de Blas, Ignacio et al. (2018). D4.2 (D14). Medeas European model. https://www.medeas.eu/deliverables
  • de Blas, Ignacio; Mediavilla, Margarita; Capellán-Pérez, Íñigo y Duce, Carmen (2020). The limits of transport decarbonization under the current growth paradigm. Energy Strategy Reviews, 32, 100543.
  • Brockway, Paul E.; Owen, Anne, Brand-Correa, Lina I.; Hardt, Lukas (2019). Estimation of global final-stage energy-return-on investment for fossil fuels with comparison to renewable energy sources. Nature Energy, 4(7), 612-621.
  • Calvo, Guiomar y Valero, Alicia (2022). Strategic mineral resources: Availability and future estimations for the renewable energy sector. Environmental Development. 41, 100640
  • Campbell, Colin J. y Laherrere, Jean H. (1998). The end of cheap oil. Scientific American 278(3): 78-83.
  • de Castro, Carlos (2009). Escenarios de energía-economía mundiales con modelos de dinámica de sistemas. UVa. Tesis doctoral: Accesible: https://geeds.es/wp-content/uploads/2011/11/Tesis-Carlos-de-Castro.pdf
  • de Castro, Carlos (2015). El potencial tecnológico de la energía eólica (vuelto a visitar). https://geeds.es/news/el-potencial-tecnologico-de-la-energia-eolica-vuelto-a-visitar/
  • de Castro, Carlos (2017). Colapso y transición de nuestra civilización: defensa del Gaiarquismo. La Albolafia: Revista de Humanidades y Cultura, 10: 75-94.
  • de Castro, Carlos y Capellán-Pérez, Íñigo (2018). Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies. BioPhysical Economics and Resource Quality 3, (3): 14.
  • de Castro, Carlos; Mediavilla, Margarita; Miguel, Luis J. y Frechoso, Fernando (2011). Global Wind Power Potential: Physical and Technological Limits. Energy Policy 39, (10): 6677-82.
  • de Castro, Carlos y Capellán-Pérez, Íñigo (2020). Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies. Energies. 13(12), 3036.
  • de Castro, Carlos; Miguel, Luis J. y Mediavilla, Margarita (2009). The Role of Non Conventional Oil in the Attenuation of Peak Oil. Energy Policy 37, (5): 1825-33.
  • de Castro, Carlos; Mediavilla, Margarita; Miguel, Luis J. y Frechoso, Fernando (2013). Global solar electric potential: A review of their technical and sustainable limits. Renewable and Sustainable Energy Reviews, 28(2013), 824-835.
  • de Castro, Carlos; Carpintero, Óscar; Frechoso, Fernando; Mediavilla, Margarita y Miguel, Luis J. (2014). A Top-down Approach to Assess Physical and Ecological Limits of Biofuels. Energy 64: 506-12.
  • de Castro, Carlos; Capellán-Perez, Íñigo; Miguel, Luis J. (2022). Reply to Fthenakis et al., (2022) (refused to be published by Energies, MDPI). https://geeds.es/en/news-2/reply-to-fthenakis-et-al-2022-refused-to-be-published-by-energies-mdpi/
  • Capellán-Pérez, Iñigo; de Castro, Carlos y Miguel González, Luis Javier (2019). Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Reviews 26, 100399.
  • Capellán-Pérez, Iñigo; de Castro, Carlos y Arto, Iñaki (2017). Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renewable and Sustainable Energy Reviews. 77: 760-782.
  • Capellán-Pérez, Íñigo et al. (2020). MEDEAS: a new modeling framework integrating global biophysical and socioeconomic constraints. Energy & Environmental Science 13: 986-1017.
  • Capellán-Pérez, Íñigo et al. (2016). (2016). Likelihood of Climate Change Pathways under Uncertainty on Fossil Fuel Resource Availability. Energy & Environmental Science 9 (8): 2482-96.
  • Dunlap, Alexander y Marin, Diego (2022). Comparing coal and ‘transition materials’? Overlooking complexity, flattening reality and ignoring capitalism. Energy Research & Social Science, 89, 102531.
  • Enríquez, José M.; Miguel, Luis J. y Duce, Carmen (Editores) (2020). Repensar la sostenibilidad. Madrid: UNED.
  • EU (2021). State of the Energy Union 2021 - Contributing to the European Green Deal and the Union’s recovery. https://energy.ec.europa.eu/index_en
  • di Felice, Louisa J.; Renner, Ansel y Giampietro, Mario (2021). Why should the EU implement electric vehicles? Viewing the relationship between evidence and dominant policy solutions through the lens of complexity. Environmental Science and Policy. 123: 1-10.
  • Fernández-Durán, Ramón y González-Reyes, Luis (2014). En la espiral de la energía. Vol. 1: Historia de la humanidad desde el papel de la energía (pero no solo). Vol. 2: Colapso del capitalismo global y civilizatorio. Madrid: Baladre y Libros en Acción.
  • Gallero, José Luis y Riechmann, Jorge (2018). Mater Celeritas. Materiales (biofísicos, políticos y poéticos) para una cronología de la aceleración. Madrid: Corazones Blindados.
  • Hall, Charles A.S.; Lambert, Jessica G. y Balogh, Stephen B. (2014). EROI of different fuels and the implications for society. Energy Policy, 64: 141-152.
  • Hermann, Weston A. (2006). Quantifying global exergy resources. Energy.31, (12): 1685-1702. https://econpapers.repec.org/scripts/redir.pf?u=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0360544205001805;h=repec:eee:energy:v:31:y:2006:i:12:p:1685-1702
  • IEA (2022). International Energy Agency. https://www.iea.org/sankey/
  • IEA (2021). The role of critical minerals in clean energy transitions. https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions
  • IPCC (2022). Sixth Assessment Report. https://www.ipcc.ch/assessment-report/ar6/
  • IPCC, (2011). IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge United Kingdom y New York: Cambridge University Press.
  • Kerschner, Christian y Capellán-Pérez, Íñigo (2017). “Peak-Oil and Ecological Economics”. En: Spash, Clinve (ed.). Routdlege Handbook of Ecological Economics: Nature and Society. Abingdon: Routledge.
  • Martin, Nick; Madrid-López, Cristina; Villalba-Méndez, Gara y Talens-Peiró, Laura (2022). Overlooked factors in predicting the transition to clean electricity. Environmental Research: Infrastructure and Sustainability, 2(2), 021005.
  • Meadows, Donella H.; Meadows, Dennis L.; Randers, Jørgen; Behrens III y William W. (1972). The Limits to Growth; A Report for the Club of Rome’s Project on the Predicament of Mankind. New York: Universe Books.
  • Moriarty, Patrick y Honnery, Damond (2019). Ecosystem maintenance energy and the need for a green EROI. Energy Policy, 131: 229-234.
  • Nieto, Jaime; Carpintero, Óscar; Miguel, Luis J. y de Blas, Ignacio (2020). Macroeconomic modelling under energy constraints: Global low carbon transition scenarios. Energy Policy, 137(111090).
  • Patzek, Tad W. (2004). Thermodynamics of the corn-ethanol biofuel cycle. Critical Reviews in Plant Sciences 23(6): 519-567.
  • Patzek, Tad W. (2006). A First-Law Thermodynamic Analysis of the Corn-Ethanol Cycle. Natural Resources Research, 15(4): 255-270.
  • Puig Vilar, Ferran (2022). Usted no se lo cree. https://ustednoselocree.com/
  • Pulido Sánchez, Daniel; Capellán-Pérez, Íñigo; Mediavilla, Margarita; De Castro, Carlos y Frechoso, Fernando (2021). Análisis de los requerimientos de materiales de la movilidad eléctrica mundial. DYNA, 96: 207 - 213.
  • Pulido Sánchez, Daniel; Capellán-Pérez, Íñigo; De Castro, Carlos y Frechoso, Fernando (2022). Material and energy requirements of transport electrification. Energy & Environmental Science, 15(12), 4872-4910.
  • Rehbein, José A.; Watson, James E. M.; Lane, Joe L.; Sonter, Laura J.; Venter, Oscar; Atkinson, Scott C. y Allan, James R. (2020). Renewable energy development threatens many globally important biodiversity areas. Global Change Biology, 26(5), 3040-3051.
  • Riechmann, Jorge (2021). Informe a la subcomisión de cuaternario. Madrid: Ardora Ediciones.
  • Sánchez Vázquez, Luis; Olivieri, Chiara; Escalante Moreno, Helios y Velázquez Pérez, Mariela (editores), (2021). Minería y extractivismos. Diálogo entre la academia y los movimientos sociales. Granada: Editorial Universidad de Granada.
  • Seibert, Megan. K. y Rees, William E. (2021). Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies, 14, no. 15: 4508.
  • Seibert, Megan K. y Rees, William E. (2022). Reply to Fthenakis et al. Comment on “Seibert, M.K.; Rees, W.E. Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition. Energies 2021, 14, 4508”. Energies 15(3), 971.
  • Sekera, June y Lichtenberger, Andreas (2020). Assessing Carbon Capture: Public Policy, Science, and Societal Need. Biophysical Economics and Sustainability, 5(3).
  • Smil, Vaclav (2008). Energy in Nature and Society: General Energetics of Complex Systems. Cambridge: The MIT Press.
  • Sonter, Laura J.; Dade, Marie C.; Watson, James E. M. y Valenta, Rick K. (2020). Renewable energy production will exacerbate mining threats to biodiversity. Nature Communications, 11(1), 4174.
  • Trainer, Ted (2017). La vía de la simplicidad: hacia un mundo sostenible y justo. Madrid: Trotta.
  • Turiel, Antonio (2020). Petrocalipsis: Crisis energética global y cómo (no) la vamos a solucionar. Barcelona: Alfabeto.
  • Valero, Antonio y Valero, Alicia (2021). Thanatia. Los límites minerales del planeta. Barcelona: Icaria.
  • World Bank. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition.https://www.commdev.org/publications/minerals-for-climate-action-the-mineral-intensity-of-the-clean-energy-transition/