Optimización experimental con presupuesto finito combinando heurísticas Bayesianas en un POMDP
- Pitarch, José Luis 1
- Armesto, Leopoldo 1
- Sala, Antonio 1
- Montes, Daniel 2
-
1
Universidad Politécnica de Valencia
info
-
2
Universidad de Valladolid
info
- Ramón Costa Castelló (coord.)
- Manuel Gil Ortega (coord.)
- Óscar Reinoso García (coord.)
- Luis Enrique Montano Gella (coord.)
- Carlos Vilas Fernández (coord.)
- Elisabet Estévez Estévez (coord.)
- Eduardo Rocón de Lima (coord.)
- David Muñoz de la Peña Sequedo (coord.)
- José Manuel Andújar Márquez (coord.)
- Luis Payá Castelló (coord.)
- Alejandro Mosteo Chagoyen (coord.)
- Raúl Marín Prades (coord.)
- Vanesa Loureiro-Vázquez (coord.)
- Pedro Jesús Cabrera Santana (coord.)
Editorial: Servizo de Publicacións ; Universidade da Coruña
ISBN: 9788497498609
Ano de publicación: 2023
Páxinas: 447-452
Congreso: Jornadas de Automática (44. 2023. Zaragoza)
Tipo: Achega congreso
Resumo
Improving decision making from the observed results after experimentation is a usual task in many applications, from the research lab scale to the industrial one. However, conducting experiments often takes a non-negligible cost. Consequently, an excessive exploration is harmful. Bayesian optimisation is a widely-used technique in this context, due to its low computational cost and because it provides good exploration-exploitation trade-offs. However, this technique does not explicitly account for the actual cost of the experiment, nor whether a limited budget (economic, number of experiments, time, etc.) exists. The problem of decision making under uncertainty and finite budget is a Partially-Observable Markov Decision Process (POMDP). This work addresses the experimental optimisation problem by combining well-known Bayesian heuristics in a POMDP framework solvable via dynamic programming, where a scenario tree is built from the available system/process knowledge (with uncertainty) at each stage. Such a knowledge is modelled as a Gaussian process which is updated with each new observation. The developed algorithm has been tested successfully to optimise the setpoints in a continuous stirred tank reactor that must produce a certain number of batches.