Optimización experimental con presupuesto finito combinando heurísticas Bayesianas en un POMDP

  1. Pitarch, José Luis 1
  2. Armesto, Leopoldo 1
  3. Sala, Antonio 1
  4. Montes, Daniel 2
  1. 1 Universidad Politécnica de Valencia
    info

    Universidad Politécnica de Valencia

    Valencia, España

    ROR https://ror.org/01460j859

  2. 2 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Libro:
XLIV Jornadas de Automática: libro de actas: Universidad de Zaragoza, Escuela de Ingeniería y Arquitectura, 6, 7 y 8 de septiembre de 2023, Zaragoza
  1. Ramón Costa Castelló (coord.)
  2. Manuel Gil Ortega (coord.)
  3. Óscar Reinoso García (coord.)
  4. Luis Enrique Montano Gella (coord.)
  5. Carlos Vilas Fernández (coord.)
  6. Elisabet Estévez Estévez (coord.)
  7. Eduardo Rocón de Lima (coord.)
  8. David Muñoz de la Peña Sequedo (coord.)
  9. José Manuel Andújar Márquez (coord.)
  10. Luis Payá Castelló (coord.)
  11. Alejandro Mosteo Chagoyen (coord.)
  12. Raúl Marín Prades (coord.)
  13. Vanesa Loureiro-Vázquez (coord.)
  14. Pedro Jesús Cabrera Santana (coord.)

Editorial: Servizo de Publicacións ; Universidade da Coruña

ISBN: 9788497498609

Ano de publicación: 2023

Páxinas: 447-452

Congreso: Jornadas de Automática (44. 2023. Zaragoza)

Tipo: Achega congreso

Resumo

Improving decision making from the observed results after experimentation is a usual task in many applications, from the research lab scale to the industrial one. However, conducting experiments often takes a non-negligible cost. Consequently, an excessive exploration is harmful. Bayesian optimisation is a widely-used technique in this context, due to its low computational cost and because it provides good exploration-exploitation trade-offs. However, this technique does not explicitly account for the actual cost of the experiment, nor whether a limited budget (economic, number of experiments, time, etc.) exists. The problem of decision making under uncertainty and finite budget is a Partially-Observable Markov Decision Process (POMDP). This work addresses the experimental optimisation problem by combining well-known Bayesian heuristics in a POMDP framework solvable via dynamic programming, where a scenario tree is built from the available system/process knowledge (with uncertainty) at each stage. Such a knowledge is modelled as a Gaussian process which is updated with each new observation. The developed algorithm has been tested successfully to optimise the setpoints in a continuous stirred tank reactor that must produce a certain number of batches.