Uso de redes neuronal convolucionales 1D en espectrometrías para clasificación de géneros de microalgas
- González Hernández, José 1
- Guzmán Sánchez, José Luis 1
- Acién, Gabriel 1
- Ciardi, Martina 1
- Moreno Úbeda, José Carlos 1
-
1
Universidad de Almería
info
- Ramón Costa Castelló (coord.)
- Manuel Gil Ortega (coord.)
- Óscar Reinoso García (coord.)
- Luis Enrique Montano Gella (coord.)
- Carlos Vilas Fernández (coord.)
- Elisabet Estévez Estévez (coord.)
- Eduardo Rocón de Lima (coord.)
- David Muñoz de la Peña Sequedo (coord.)
- José Manuel Andújar Márquez (coord.)
- Luis Payá Castelló (coord.)
- Alejandro Mosteo Chagoyen (coord.)
- Raúl Marín Prades (coord.)
- Vanesa Loureiro-Vázquez (coord.)
- Pedro Jesús Cabrera Santana (coord.)
Editorial: Servizo de Publicacións ; Universidade da Coruña
ISBN: 9788497498609
Año de publicación: 2023
Páginas: 399-404
Congreso: Jornadas de Automática (44. 2023. Zaragoza)
Tipo: Aportación congreso
Resumen
En este trabajo se presenta el desarrollo de una red neuronal para la clasificación de especies de microalgas basada en muestras espectrales. Los datos necesarios para realizar la clasificación son obtenidos mediante un espectrofotómetro, utilizado barridos espectrales como datos representativos para la caracterización de las muestras. El modelo desarrollado ha sido entrenado en base a estos datos y permite distinguir y clasificar entre 4 géneros diferentes de microalgas, Spirulina, Chlorella, Synechococcus y Scenedesmus. Los resultados demuestran una elevada tasa de acierto y precisión en el modelo frente a muestras puras, presentando un gran potencial para el desarrollo futuro de herramientas para la monitorización de cultivos a gran escala que permita contribuir al control de contaminación del cultivo.