Traducción Automática y Posedición en TAVestudio piloto de una práctica en alza

  1. Arnáiz-Uzquiza, Verónica 1
  2. Igareda González, Paula 2
  1. 1 Universidad de Valladolid

    Universidad de Valladolid

    Valladolid, España


  2. 2 Universitat de Vic-Universitat Central de Catalunya
TRANS: revista de traductología

ISSN: 1137-2311 2603-6967

Year of publication: 2023

Issue: 27

Pages: 197-214

Type: Article

More publications in: TRANS: revista de traductología


Machine translation (MT) and post-editing (PE) are still considered, in many sectors, enemies of the creative freedom traditionally associated with the audiovisual genre and its translation. Its growing presence in the market is unheralded due to the widespread rejection by a large part of the professional community. However, it is necessary to study the benefits of their implementation in all areas, from quality to productivity, considering all the parties involved in the process.In order to study the differences between the traditional Audiovisual Translation (AVT) process without tools and the process implemented with MTPE, a pilot study was carried out aimed at comparing the results in the English-Spanish translation of a series of 3-minute news and sports clips with different technical characteristics. The results will allow us to obtain an objective comparative description of both processes in order to better know the strengths and weaknesses of each one.

Bibliographic References

  • Agulló García, B. (2020). El paradigma actual de la subtitulación: cambios en la distribución de contenido, nuevos hábitos de consumo y avances tecnológicos. La linterna del traductor, 20, 53-62.
  • Alves, F., Sarto Szpak, K., Gonçalves, J. L., Sekino, K., Aquino, M., Araújo e Castro, R., Koglin, A., de Lima Fonseca, N. B. & Mesa-Lao, B (2016). Investigating cognitive effort in postediting: A relevance-theoretical approach. In S. Hansen-Schirra & S. Grucza (Eds.), Eyetracking and Applied Linguistics (pp. 109-142). Language Science Press. http://10.17169/langsci.b108.296
  • AppTek (2021, September 20). This Is How Automatic Speech Recognition & Machine Translation Are Revolutionizing Subtitling. Slator.
  • Aranberri, N. (2014). Posedición, productividad y calidad. Revista Tradumàtica. Tecnologies de la Traducció, 12, 471-477.
  • Asociación Española de Traductores, Correctores e Intérpretes (ASETRAD) (2021). Posedición. Guía para profesionales. Asetrad.
  • ATAA (2022, October 3). Machine-translated subtitling – human translators are up in arms. Association des traducteurs adaptateurs de l’audiovisuel.
  • Athanasiadi, R. (2021). Technology as a driving force in subtitling. In L. Mejías-Climent & J. F. Carrero Martín (Eds.), New Perspectives in Audiovisual Translation. Towards Future Research Trends (pp. 139-166). Universitat de València.
  • ATRAE (2021, October 13). Comunicado sobre la posedición. Asociación de Traducción y Adaptación Audiovisual de España.
  • ATRAE (2022, September 27). Comunicado sobre el uso de lenguas puente. Asociación de Traducción y Adaptación Audiovisual de España.
  • AVTE (2021). Machine translation manifesto. Audiovisual Translators Europe. The European Federation of Audiovisual Translators.
  • Bellés-Calvera, L. & Caro Quintana, R. (2021). Audiovisual Translation through NMT and Subtitling in the Netflix Series Cable Girls. Translation and Interpreting Technology Online, 142-148.
  • Bolaños-García-Escribano, A., Díaz-Cintas, J. & Massidda, S. (2021). Subtitlers on the Cloud: The Use of Professional Web-based Systems in Subtitling Practice and Training. Revista Tradumàtica. Tecnologies de la Traducció, 19, 1-21.
  • Bruno, L., Miloro, A., Sabaté-Carrové, P. E. & Sabaté-Carrové, M. (2021). Preconceptions from pre-professionals about MTPE. In M. Sabaté-Carrové & L. Baudo (Eds.), The translation process series. Multiple perspective from teaching to professional practice. Volume 1 (pp. 41-44). Edicions de la Universitat de Lleida.
  • Bundgaard, K. (2017). Translator attitudes towards translator-computer interaction - Findings from a workplace study. Hermes-Journal of Language and Communication in Business, 56, 125-144.
  • Burchardt, A., Lommel, A., Bywood, L., Harris, K. & Popović, M. (2016). Machine translation quality in an audiovisual context. Target 28(2), 206-221.
  • Bywood, L. & Georgakopoulou, Y. (2017). Embracing the threat: machine translation as a solution for subtitling. Perspectives Studies in Translatology 25(3), 1-17. http://10.1080/0907676X.2017.1291695
  • Cadwell, P., O’Brien, S. & Teixeira, C. S. C. (2017). Resistance and Accommodation: Factors for the (Non)adoption of machine translation among professional translators. Perspectives, 26(3), 301-321.
  • Cantos, P. & Sánchez, A. (2011). El inglés y el español desde una perspectiva cuantitativa y distributiva: equivalencias y contrastes. Estudios Ingleses de la Universidad Complutense, 19, 15-44.
  • Carl, M., Dragsted, B., Elming, J., Hardt, D. & Jakobsen, A. L. (2011). The process of post-editing: a pilot study. In B. Sharp, M. Zock, M. Carl & A. L. Jakobsen (Eds.), Proceedings of the 8th international NLPSC workshop. Special theme: Human-machine interaction in translation (pp. 131-142). Copenhagen Business School.
  • Díaz-Cintas, J. & S. Massidda (2020). Technological advances in audiovisual translation. In M. O’Hagan (Ed.), The Routledge Handbook of Translation and Technology (pp. 225-270). Routledge.
  • European Language Industry Survey (ELIS) (2023). Trends, expectations and concerns of the European language industry.
  • Eriksen (2019, March 6). Text Expansion and contraction in Translation. Eriksen Translation.
  • Estopace, E. (2018, January 22). From Indonesia to Nigeria: Inside iflix’s Localization Rollout. Slator.
  • Fernández Moriano, P. (2019). Herramientas informáticas para traductores audiovisuales. In J. F. Carrero Martín, B. Cerezo Merchán, J. J. Martínez Sierra & G. Zaragoza Ninet (Eds.), La traducción audiovisual: aproximaciones desde la academia y la industria (pp. 73-92). Comares.
  • Fernández-Torné, A. & Matamala, A. (2015). Text-to-Speech vs. Human Voiced Audio Descriptions: A Reception Study in Films Dubbed into Catalan. The Journal of Specialised Translation, 24, 61-88.
  • Firat, G. (2021). Uberization of translation. Impacts on working conditions. The Journal of Internationalisation and Localization, 8(1), 48-75.
  • Gaspari, F., Almaghout, F. & Doherty, S. (2015). A survey of machine translation competences: Insights for translation technology educators and practitioners. Perspectives, 23(3), 333-358.
  • Georgakopoulou, P. (2006). Subtitling and globalisation. The Journal of Specialised Translation, 6, 115-120.
  • Georgakopoulou, P. (2019). Template files: The Holy Grail of subtitling. Journal of Audiovisual Translation, 2(2),137-160.
  • González-Pastor, D. & Rico, C. (2021). POSEDITrad: la traducción automática y la posedición para la formación de traductores e intérpretes. Revista Digital de Investigación en Docencia Universitaria (RIDU), 15(1).
  • Guerberof-Arenas, A. (2009). Productivity and quality in MT post-editing. In Proceedings of the MT Summit XII Workshop Beyond Translation Memories: New Tools for Translators MT.
  • Guerberof-Arenas, A. (2013). What do professional translators think about post-editing. The Journal of Specialised Translation, 19(19), 75-95.
  • Karakanta, A. (2022). Experimental research in automatic subtitling: At the crossroads between Machine Translation and Audiovisual Translation. In G. M. Greco, A. Jankowska & A. Szarkowska (Eds.), Methodological Issues in Experimental Research in Audiovisual Translation and Media Accessibility, Translation Spaces 11(1), 89-112.
  • Karakanta, A., Bentivogli, L., Cettolo, M., Negri, M. & Turchi, M. (2022). Post-editing in Automatic Subtitling: A Subtitlers’ perspective. In Proceedings of the 23rd Annual Conference of the European Association for Machine Translation (pp. 261-270). European Association for Machine Translation.
  • Kenny, D. & Doherty. S. (2014). Statistical machine translation in the translation curriculum: overcoming obstacles and empowering translators. The Interpreter and Translator Trainer, 8(2), 276-294.
  • Kenny, D. (2022). Machine translation for everyone: Empowering users in the age of artificial intelligence. Language Science Press. http://10.5281/zenodo.6653406
  • Koponen, M., Sulubacak, U., Vitikainen, K. & Tiedemann, J. (2020). MT for subtitling: Investigating professional translator’s user experience and feedback. In Proceedings of 1st Workshop on Post-Editing in Modern-Day Translation. Virtual. Association for Machine Translation in the Americas (pp. 79-92).
  • Krings, H. P. (2011). Repairing texts: empirical investigations of machine translation post-editing processes. The Kent University Press.
  • Läubli, S., Fishel, M., Massey, G., Ehrensberger-Dow, M. & Volk, M. (2013). Assessing Post-Editing Efficiency in a Realistic Translation Environment. In S. O’Brien, M. Simard & L. Specia (Eds.), Proceedings of MT Summit XIV Workshop on Post-editing Technology and Practice (pp. 83-91). European Association for Machine Translation.
  • Lionbridge (2022, August 23). Lionbridge Language Cloud: Is Machine Translation getting better? The Lionbridge Team.
  • Lommel, A., Uszkoreit, H. & Burchardt, A. (2014). Multidimensional Quality Metrics (MQM): A Framework for Declaring and Describing Translation Quality Metrics. Revista Tradumàtica. Tecnologies de la Traducció, 12, 455-463.
  • Martín-Mor, A. & Sánchez-Gijón, P. (2016). Machine translation and audiovisual products: a case study. The Journal of Specialised Translation, 26, 172-186.
  • Martínez Martínez, J. M. & Vela, M. (2016). SubCo: A Learner Translation Corpus of Human and Machine Subtitles. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16) (pp. 2246-2254). European Language Resources Association (ELRA).
  • Matusov, E., Wilken, P., & Georgakopoulou, Y. (2019). Customizing neural machine translation for subtitling. In Proceedings of the Fourth Conference on Machine Translation (WMT), Volume 1 Research Papers (pp. 82-93). Association for Computational Linguistics.
  • Mejías-Climent, L. & de los Reyes Lozano, J. (2021). Traducción automática y posedición en el aula de doblaje: resultados de una experiencia docente. Hikma, 20(2), 203-227.
  • Moorkens, J., Toral, A., Castilho, S., & Way, A. (2018). Translators’ perceptions of literary post-editing using statistical and neural machine translation. Translation Spaces, 7(2), 240-262.
  • Nunes Vieira, L. & Alonso, E. (2018). The use of machine translation in human translation workflows: Practices, perceptions and knowledge exchange. Technical report. University of Bristol and Universidad Pablo de Olavide.
  • O’Curran, E. (2014). Translation quality in post-edited versus human-translated segments: a case study. In S. O’Brien, M. Simard & L. Specia (Eds.), Proceedings of AMTA Third Workshop on Post-editing technology and Practice (pp. 113-118). Association for Machine Translation in the Americas.
  • Ortiz-Boix, C. (2016). Machine translation and post-editing in wildlife documentaries: Challenges and possible solutions. Hermeneus: Revista de la Facultad de Traducción e Interpretación de Soria, 18, 269-313.
  • Parra Escartín, C. (2018). ¿Cómo ha evolucionado la traducción automática en los últimos años? La linterna del traductor, 16, 20-28.
  • Pedersen, J. (2017). The FAR model: assessing quality in interlingual subtitling. The Journal of Specialised Translation, 28, 210–229.
  • Petukhova, V., Agerri, R., Fishel, M., Georgakopoulou, Y., Penkale, S., del Pozo, A., Sepesy M., Volk, M. & Way, A. (2012). SUMAT: Data Collection and Parallel Corpus Compilation for Machine Translation of Subtitles. In Proceedings of the 8th Language Resources and Evaluation Conference (pp. 21-28).
  • Quesada-Granja, C. (2009, January 19). Distribución por longitud de las palabras de diferentes idiomas. Slideshare.
  • Rico, C. & González Pastor, D. (2022). The role of machine translation in translation education: A thematic analysis of translator educators’ beliefs. The international Journal of Translation & Interpreting, 14(1), 177-197.
  • Rinsche, A. & Portera-Zanotti, N. (2009). Study report to the Directorate General for Translation of the European Commission. Final Version. Study on the Size of the Language Industry in the EU. The Language Technology Centre Ltd.
  • Romero-Fresco, P. & Martínez, J. (2015). Accuracy Rate in Live Subtitling: The NER model. In R. B. Piñero & J. Díaz-Cintas (Eds.), Audiovisual Translation in a Global Context. Palgrave Studies in Translating and Interpreting (pp. 28-50). Palgrave Macmillan.
  • Romero-Fresco, P. & Pöchhacker, F. (2017). Quality assessment in interlingual live subtitling: the NTR model. Linguistica Antverpiensia, New Series: Themes in Translation Studies, 16, 149-167.
  • Sagar, R. (2020, June 5). Netflix Is Using AI For Its Subtitles. Aim.
  • Sakamoto, A. (2021). The value of Translation in the Era of Automation: An examination of Threats. In R. Desjardins, C. Larsonneur & P. Lacour (Eds.), When Translation Goes Digital (pp. 231-256). Palgrave Studies in Translating and Interpreting MacMillan.
  • Sánchez-Gijón, P. (2016). La posedición: hacia una definición competencial del perfil y una descripción multidimensional del fenómeno. Sendebar, 27, 151-162.
  • Szarkowska, A., Díaz-Cintas, J. & Gerber-Morón, O. (2021). Quality is in the eye of the stakeholders: what do professional subtitlers and viewers think about subtitling? Universal Access in the Information Society, 20, 661-675.
  • Translation Automation User Society (TAUS) (2010). Machine Translation post-editing guidelines. De Rijp.
  • Torres-Hostench, O., Presas, M. & Cid-Leal, P. (coords.) (2016). El uso de traducción automática y posedición en las empresas de servicios lingüísticos españolas: Informe de investigación ProjecTA 2015.
  • Varga, C. (2021). Online Automatic Subtitling Platforms and Machine Translation. An Analysis of Quality in AVT. Scientific Bulletin of the Politechnica University of Timişoara, 20(1), 37-49.
  • Vercauteren, G., Reviers, N. & Steyaert, K. (2021). Evaluating the effectiveness of machine translation of audiodescription: the results of two pilot studies in the English-Dutch language pair. Revista Tradumàtica. Tecnología de la Traducción, 19, 226-252.