Analysis of biochars produced from the gasification of pinus patula pellets and chips as soil amendments

  1. Jonatan Gutiérrez 1
  2. Ainhoa Rubio-Clemente 2
  3. Juan F. Pérez 3
  1. 1 Universidad de Antioquia – UdeA, Facultad de Ingeniería, Grupo de Manejo Eficiente de la Energía – GIMEL, Medellín, Colombia // Universidad de Antioquia – UdeA, Facultad de Ingeniería, Grupo de Investigación Energía Alternativa – GEA, Medellín, Colombia
  2. 2 Universidad de Antioquia – UdeA, Facultad de Ingeniería, Grupo de Investigación Energía Alternativa – GEA, Medellín, Colombia
  3. 3 Universidad de Antioquia – UdeA, Facultad de Ingeniería, Grupo de Manejo Eficiente de la Energía – GIMEL, Medellín, Colombia //
Journal:
Maderas: Ciencia y tecnología

ISSN: 0717-3644 0718-221X

Year of publication: 2022

Volume: 24

Issue: 1

Type: Article

More publications in: Maderas: Ciencia y tecnología

Abstract

In this work, biochar (BC), a co-product of the fixed bed gasification process of Pinus patula wood pellets (PL) and chips (CH), was characterized as soil amendment. The physicochemical properties and the mineral content of the pellet’s biochar (PL-BC) and the chips biochar (CH-BC) were analyzed following the NTC5167 Colombian technical standard. The BET surface area values of the BCs were 367,33 m2/g and 233,56 m2/g for the PL-BC and the CH-BC, respectively, and the pore volume was 0,20 cm3/g for the PL-BC and 0,13 cm3/g for the CH-BC. These characteristics favor the increase of the BCs water-holding capacity (WHC). Properties such as the pH (8,8-9,0), the WHC (219 % - 186,4 %), the total organic carbon (33,8 % - 23,9 %), the metalloid presence (Ca, Mg, K, Mn, Al, Si, and Fe), and the ash (1,92 wt% - 2,74 wt%) and moisture contents (11,13 wt% - 11,63 wt%) for both BCs were found to be within the limits set by the NTC5167 standard. Furthermore, the presence of micro and macronutrients, such as Fe and phosphorus (P), and the alkaline pH, make possible the use of these BCs as amendments for acid soils

Bibliographic References

  • Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Mahmood, A.; Zia-ur-Rehman, M.; Ibrahim, M.; Arshad, M.; Qayyum, M.F. 2018. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148: 825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063
  • Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99: 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  • Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131: 374–379. https://doi.org/10.1016/j.biortech.2012.12.165
  • Almaroai, Y.A.; Usman, A.R.A.; Ahmad, M.; Moon, D.H.; Cho, J.S.; Joo, Y.K.; Jeon, C.; Lee, S.S.; Ok, Y.S. 2014. Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ Earth Sci 71(3): 1289–1296. https://doi.org/10.1007/s12665-013-2533-6
  • American Society for Testing and Materials. 2008. ASTM D5373-08: Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal. ASTM. West Conshohocken, PA, USA. https://www.astm.org/DATABASE.CART/HISTORICAL/D5373-08.htm
  • Baptista, I.; Miranda, I.; Quilhó, T.; Gominho, J.; Pereira, H. 2013. Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind Crops Prod 50: 166–175. https://doi.org/10.1016/j.indcrop.2013.07.004
  • Bayu, D.; Dejene, A.; Alemayehu, R.; Gezahegn, B. 2017. Improving available phosphorus in acidic soil using biochar. J Soil Sci Environ Manag 8(4): 87–94. https://doi.org/10.5897/jssem2015.0540
  • Blume, H; Brümmer, G.W; Fleige, H; Horn, R; Kandeler, E; Kögel-knabner, I; Kretzschmar, R; Stahr, K; Wilke, B. 2016. Soil Science 16th ed. Springer. https://doi.org/10.1007/978-3-642-30942-7
  • Brewer, C.E.; Unger, R.; Schmidt-Rohr, K.; Brown, R.C. 2011. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4(4): 312–323. https://doi.org/10.1007/s12155-011-9133-7
  • Buss, W.; Shepherd, J.G.; Heal, K.V.; Mašek, O. 2018. Spatial and temporal microscale pH change at the soil-biochar interface. Geoderma 331: 50–52. https://doi.org/10.1016/j.geoderma.2018.06.016
  • Detmann, K.C.; Araújo, W.L.; Martins, S.C.V.; Sanglard, L.M.V.P.; Reis, J.V.; Detmann, E.; Rodrigues, F.Á.; Nunes-Nesi, A.; Fernie, A.R.; Damatta, F.M. 2012. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196(3): 752-762. https://doi.org/10.1111/j.1469-8137.2012.04299.x
  • Díez, H.E.; Pérez, J.F. 2019. Effects of wood biomass type and airflow rate on fuel and soil amendment properties of biochar produced in a top-lit updraft gasifier. Environ Prog Sustain Energy 38(4): 1–14. https://doi.org/10.1002/ep.13105
  • Díez, H.E.; Pérez, J.F. 2017. Physicochemical characterization of representative firewood species used for cooking in some Colombian regions. Int J Chem Eng 2017: 1–13. https://doi.org/10.1155/2017/4531686
  • Dunnigan, L.; Morton, B.J.; Ashman, P.J.; Zhang, X.; Kwong, C.W. 2018. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Waste Manag 77: 59–66. https://doi.org/10.1016/j.wasman.2018.05.004
  • European Biochar Certificate. EBC. 2019. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar. Eur Biochar Found, Arbaz, Switzerland.. https://doi.org/10.13140/RG.2.1.4658.7043
  • Fang, Q.; Chen, B.; Lin, Y.; Guan, Y. 2014. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48(1): 279–288. https://doi.org/10.1021/es403711y
  • Food and Agriculture Organization of the United Nations. FAO. 2019. FAOSTAT - Forestry production and trade. http://www.fao.org/faostat/en/#data/FO/visualize (accessed 4.14.20).
  • Fischer, B.M.C.; Manzoni, S.; Morillas, L.; Garcia, M.; Johnson, M.S.; Lyon, S.W. 2019. Improving agricultural water use efficiency with biochar – A synthesis of biochar effects on water storage and fluxes across scales. Sci Total Environ 657: 853-862. https://doi.org/10.1016/j.scitotenv.2018.11.312
  • Godlewska, P.; Ok, Y.S.; Oleszczuk, P. 2021. The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils. J Hazard Mater 403: 123833. https://doi.org/10.1016/j.jhazmat.2020.123833
  • Gomez-Eyles, J.L.; Beesley, L.; Moreno-Jiménez, E.; Ghosh, U.; Sizmur, T. 2013. The potential of biochar amendments to remediate contaminated soils. In Biochar and Soil Biota. Ladygina, N.; Rineau, F. (Eds.). Chapter 4. CRC Press https://doi.org/10.13140/2.1.1074.9448
  • González, W.A.; López, D.; Pérez, J.F. 2020. Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders. Renew Energy 147: 1139–1150. https://doi.org/10.1016/j.renene.2019.09.094
  • González, W.A.; Pérez, J.F. 2019. CFD analysis and characterization of biochar produced via fixed-bed gasification of fallen leaf pellets. Energy 186(2019): 115904. https://doi.org/10.1016/j.energy.2019.115904
  • González, W.A.; Pérez, J.F.; Chapela, S.; Porteiro, J. 2018. Numerical analysis of wood biomass packing factor in a fixed-bed gasification process. Renew Energy 121: 579–589. https://doi.org/10.1016/j.renene.2018.01.057
  • Gunarathne, V.; Senadeera, A.; Gunarathne, U.; Biswas, J.K.; Almaroai, Y.A.; Vithanage, M. 2020. Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar 2(1): 107–120. https://doi.org/10.1007/s42773-020-00036-4
  • Gutiérrez, J.; Rubio-Clemente, A.; Pérez, J.F. 2021. Effect of main solid biomass commodities of patula pine on biochar properties produced under gasification conditions. Ind Crops Prod 160(2021): 113123. https://doi.org/10.1016/j.indcrop.2020.113123
  • Hansen, V.; Müller-Stöver, D.; Ahrenfeldt, J.; Holm, J.K.; Henriksen, U.B.; Hauggaard-Nielsen, H. 2015. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenerg 72(1): 300–308. https://doi.org/10.1016/j.biombioe.2014.10.013
  • Hernández, J.J.; Lapuerta, M.; Monedero, E. 2016. Characterisation of residual char from biomass gasification: effect of the gasifier operating conditions. J Clean Prod 138: 83–93. https://doi.org/10.1016/j.jclepro.2016.05.120
  • Instituto Colombiano de Normas Técnicas y Certificación. ICONTEC. 2011. Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo - NTC 5167 Standard (In Spanish). Bogotá, Colombia. https://tienda.icontec.org/gp-productos-para-la-industria-agricola-productos-organicos-usados-como-abonos-o-fertilizantes-y-enmiendas-o-acondicionadores-de-suelo-ntc5167-2011.html
  • Instituto Nacional de Salud. INS. 2019. Carga de enfermedad ambiental en Colombia (In Spanish). Observatorio Nacional de Salud, Bogotá, Colombia. https://www.ins.gov.co/Direcciones/ONS/Resumenes%20Ejecutivos/Resumen%20ejecutivo%20informe10%20Carga%20de%20enfermedad%20en%20Colombia.pdf (accessed 9.30.19).
  • International Biochar Initiative. 2019. What is biochar? https://biochar-international.org/biochar-in-developing-countries/ (accessed 6.3.19).
  • Kamal Baharin, N.S.; Koesoemadinata, V.C.; Nakamura, S.; Azman, N.F.; Muhammad Yuzir, M.A.; Md Akhir, F.N.; Iwamoto, K.; Yahya, W.J.; Othman, N.; Ida, T.; Hara, H. 2020. Production of Bio-Coke from spent mushroom substrate for a sustainable solid fuel. Biomass Convers Biorefin https://doi.org/10.1007/s13399-020-00844-5
  • Keiluweit, M.; Nico, P.S.; Johnson, M.; Kleber, M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4): 1247–1253. https://doi.org/10.1021/es9031419
  • Lee, J.W.; Kidder, M.; Evans, B.R.; Paik, S.; Buchanan, A.C.; Garten, C.T.; Brown, R.C. 2010. Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20): 7970–7974. https://doi.org/10.1021/es101337x
  • Lim, J.E.; Ahmad, M.; Usman, A.R.A.; Lee, S.S.; Jeon, W.T.; Oh, S.E.; Yang, J.E.; Ok, Y.S. 2013. Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ Earth Sci 69(1): 11–20. https://doi.org/10.1007/s12665-012-1929-z
  • Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1): 147–154. https://doi.org/10.1016/j.fuel.2011.07.019
  • Mia, S.; Uddin, N.; Al Mamun Hossain, S.A.; Amin, R.; Mete, F.Z.; Hiemstra, T. 2015. Production of Biochar for Soil Application: A Comparative Study of Three Kiln Models. Pedosphere 25(5): 696–702. https://doi.org/10.1016/S1002-0160(15)30050-3
  • Ministerio de Agricultura y Desarrollo Rural. Minagricultura. 2015. Colombia tiene un potencial forestal de 24 millones de hectáreas para explotación comercial (In Spanish). Bogotá, Colombia. https://www.minagricultura.gov.co/noticias/Paginas/Colombia-tiene-un-potencial-forestal.aspx (accessed 4.14.20).
  • Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. 2013. Characterization of North American lignocellulosic biomass and biochars in terms of their Candidacy for alternate renewable fuels. Bioenergy Res 6(2): 663–677. https://doi.org/10.1007/s12155-012-9281-4
  • Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.; Steiner, C.; Das, K.; Ahmedna, M.; Rehrah, D.; Watts, D.; Busscher, W.; Schomberg, H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3(1): 195–206. https://openjournals.neu.edu/aes/journal/article/view/v3art5/v3p195-206
  • Nsamba, H.K.; Hale, S.E.; Cornelissen, G.; Bachmann, R.T. 2015. Designing and Performance Evaluation of Biochar Production in a Top-Lit Updraft Up-scaled Gasifier. J Sustain Bioenergy Syst 5(2): 41–55. https://doi.org/10.4236/jsbs.2015.52004
  • Ok, Y; Uchimiya, S; Chang, S; Bolan, N. 2016. Biochar: production, characterization, and applications. 1st ed. CRC Press Taylor & Francis Group. https://doi.org/10.1201/b18920
  • Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G. 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 5(1): 65–75. https://doi.org/10.5194/se-5-65-2014
  • Pérez, J.F.; Pelaez-Samaniego, M.R.; Garcia-Perez, M. 2019. Torrefaction of fast-growing Colombian wood species. Waste Biomass Valorization 10(6): 1655–1667. https://doi.org/10.1007/s12649-017-0164-y
  • Pérez, J.F; Ramírez, G.L. 2019. Aplicaciones agroenergéticas con maderas cultivadas y oportunidades preliminares de mercado (In Spanish), 1st ed. ed, Editorial Universidad de Antioquia. http://bibliotecadigital.udea.edu.co/handle/10495/10959
  • Protásio, T. de P.; Bufalino, L.; Denzin, G.H.; Junior, M.G.; Trugilho, P.F.; Mendes, L.M. 2013. Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels. BioResources 8(1): 1166–1185. https://doi.org/10.15376/biores.8.1.1166-1185
  • Qian, K.; Kumar, A.; Patil, K.; Bellmer, D.; Wang, D.; Yuan, W.; Huhnke, R.L. 2013. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 6(8): 3972–3986. https://doi.org/10.3390/en6083972
  • Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. 2015. Recent advances in utilization of biochar. Renew Sustain Energy Rev 42: 1055–1064. https://doi.org/10.1016/j.rser.2014.10.074
  • Ramos-Carmona, S.; Pérez, J.F.; Pelaez-Samaniego, M.R.; Barrera, R.; Garcia-Perez, M. 2017. Effect of torrefaction temperature on properties of patula pine. Maderas-Cienc Tecnol 19(1): 39–50. https://doi.org/10.4067/S0718-221X2017005000004
  • De la Rosa, J.M.; Paneque, M.; Hilber, I.; Blum, F.; Knicker, H.E.; Bucheli, T.D. 2016. Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended agricultural soil from Southern Spain. J Soils Sediments 16(2): 557-565. https://doi.org/10.1007/s11368-015-1250-z
  • Singh, B.P.; Cowie, A.L.; Smernik, R.J. 2012. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46(21): 11770–11778. https://doi.org/10.1021/es302545b
  • Sohi, S.P. 2012. Carbon storage with benefits. Science 338(6110): 1034–1035. https://doi.org/10.1126/science.1225987
  • Tanure, M.M.C.; da Costa, L.M.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Pereira Junior, J.D.; da Luz, J.M.R. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res 192: 164-173. https://doi.org/10.1016/j.still.2019.05.007
  • Trigo, C.; Cox, L.; Spokas, K. 2016. Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents. Sci Total Environ 566–567: 1454–1464. https://doi.org/10.1016/j.scitotenv.2016.06.027
  • Vamvuka, D.; Pitharoulis, M.; Alevizos, G.; Repouskou, E.; Pentari, D. 2009. Ash effects during combustion of lignite/biomass blends in fluidized bed. Renew Energy 34(12): 2662–2671. https://doi.org/10.1016/j.renene.2009.05.005
  • van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1): 235–246. https://doi.org/10.1007/s11104-009-0050-x
  • Wang, X.; Chi, Q.; Liu, X.; Wang, Y. 2019. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. Chemosphere 216: 698-706. https://doi.org/10.1016/j.chemosphere.2018.10.189
  • Wang, Y.; Yin, R.; Liu, R. 2014. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J Anal Appl Pyrolysis 110(1): 375–381. https://doi.org/10.1016/j.jaap.2014.10.006
  • Yang, X.B.; Ying, G.G.; Peng, P.A.; Wang, L.; Zhao, J.L.; Zhang, L.J.; Yuan, P.; He, H.P. 2010. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58(13): 7915–7921. https://doi.org/10.1021/jf1011352
  • Yu, O.Y.; Harper, M.; Hoepfl, M.; Domermuth, D. 2017. Characterization of biochar and its effects on the water holding capacity of loamy sand soil: Comparison of hemlock biochar and switchblade grass biochar characteristics. Environ Prog Sustain Energy 36(5): 1474-1479. https://doi.org/10.1002/ep.12592
  • Zhang, Y.; Wang, J.; Feng, Y. 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena 202(October 2020): 105284. https://doi.org/10.1016/j.catena.2021.105284
  • Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. 2018. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174: 977–987. https://doi.org/10.1016/j.jclepro.2017.11.013