Modelos de Requisitos Basados en I* para Detectar Proactividad en Dashboards

  1. Pérez Acosta, Alain 1
  2. Moreno Espino, Mailyn 1
  1. 1 Instituto Superior Politécnico José Antonio Echeverría (CUJAE), Facultad de Ingeniería Informática
Revista:
Lámpsakos

ISSN: 2145-4086 2145-4086

Año de publicación: 2014

Título del ejemplar: Edición 12: Investigación, Desarrollo e Innovación Tecnológica

Número: 12

Páginas: 101-109

Tipo: Artículo

DOI: 10.21501/21454086.1349 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Lámpsakos

Objetivos de desarrollo sostenible

Resumen

El objetivo del trabajo es presentar modelos para la captura de los requisitos de un dashboard que permiten detectar un comportamiento proactivo. Estos modelos siguen un enfoque orientado a metas y fueron creados utilizando el marco de trabajo i*, que toma como base las premisas del modelado social. Para detectar el comportamiento proactivo se utilizaron patrones basados en modelos de i* que permiten detectar proactividad en la etapa de requisitos de un sistema de software. Los modelos que se obtienen como resultado del trabajo tienen representados los actores, metas, intenciones, tareas y recursos que se necesitan para modelar los requisitos de un dashboard con un comportamiento proactivo, y pueden además ser utilizados en distintos contextos de negocio.

Referencias bibliográficas

  • Zagorecki, A., et al., Executive Dashboard Systems for Emergency Management. COMMUNICATIONS, 2012. 4(2): p. 82-89.
  • Gröger, C., et al., The Operational Process Dashboard for Manufacturing. 2013: p. 6.
  • Lempinen, H., Constructing a Design Framework for Performance Dashboards, in Nordic Contributions in IS Research, C. Keller, et al., Editors. 2012, Springer Berlin Heidelberg. p. 109-130.
  • Elias, M. and A. Bezerianos, Exploration Views: Understanding Dashboard Creation and Customization for Visualization Novices, in Human-Computer Interaction – INTERACT 2011, P. Campos, et al., Editors. 2011, Springer Berlin Heidelberg. p. 274-291.
  • Eckerson, W.W., What Are Performance Dashboards?, in Performance Dashboards: Measuring, Monitoring, and Managing Your
  • Business, John Wiley & Sons.
  • Few, S., Information Dashboard Design: The Effective Visual Communication of Data 2006: O'Reilly.
  • Yigitbasioglu, O.M. and O. Velcu, A review of dashboards in performance management: Implications for design and research. International Journal of Accounting Information Systems, 2011. 13: p. 19.
  • Grant, A.M. and S.J. Ashford, The dynamics of proactivity at work. Research in Organizational Behavior, 2008. 28(-): p. 3-34.
  • Li, J. and Y. Feng, Construction of Multi-Agent System for Decision Support of Online Shopping, in Emerging Research in Artificial Intelligence and Computational Intelligence, H. Deng, et al., Editors. 2011, Springer Berlin Heidelberg. p. 318-324.
  • Srinivasan, S., J. Singh, and V. Kumar, Multi-agent based decision Support System using Data Mining and Case Based Reasoning. International Journal of Computer Science Issues, 2011. 8(4): p. 340-349.
  • Lindgren, H., D. Surie, and I. Nilsson, Agent-Supported Assessment for Adaptive and Personalized Ambient Assisted Living, in Trends in Practical Applications of Agents and Multiagent Systems, J. Corchado, et al., Editors. 2011, Springer Berlin Heidelberg. p. 25-32.
  • McNaull, J., et al., Multi-agent System Feedback and Support for Ambient Assisted Living, in 8th International Conference on Intelligent Environments. 2012: Guanajuato p. 319 - 322.
  • Ghorbani, J., M.A. Choudhry, and A. Feliachi, Real-time multi agent system modeling for fault detection in power distribution systems in North American Power Symposium. 2012: Champaign. p. 1-6.
  • Moreno, M., Patrones para incorporar proactividad en sistemas informáticos. 2013, Instituto Superior Politécnico José Antonio Echeverría: La Habana. p. 172.
  • Yu, E., Social Modeling and i*, in Conceptual Modeling: Foundations and Applications, T.B. Alexander, et al., Editors. 2009, Springer-Verlag. p. 99-121.
  • Yu, E., et al., Social Modeling for Requirements Engineering. 1st ed. 2011, Cambridge: The MIT Press. 760.
  • Mazón, J.N., J. Pardillo, and J. Trujillo, A Model-Driven Goal-Oriented Requirement Engineering Approach for Data Warehouses, in Advances in Conceptual Modeling – Foundations and Applications, J.-L. Hainaut, et al., Editors. 2007, Springer Berlin Heidelberg: Berlin. p. 255-264.
  • Frankl, V., Man's Search for Meaning. 2006: Beacon Press.
  • Jennings, N.R., An agent-based approach for building complex software systems. Communications of the ACM, 2001. 44(4): p. 35-41.
  • Sommerville, I., Integrated Requirements Engineering: A Tutorial. IEEE Software, 2005. 22(1): p. 16-23.
  • Sommerville, I. and P. Sawyer, Requirements Engineering: A Good Practice Guide. 1st ed. 1997: John Wiley & Sons. 404.
  • Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development Process. reprint ed. 2012: Prentice Hall.
  • Fuentes-Fernández, R., J. Gómez-Sanz, and J. Pavón, Understanding the human context in requirements elicitation. Requirements Engineering, 2010. 15(3): p. 267-283.
  • Horkoff, J. and E. Yu, Comparison and evaluation of goal-oriented satisfaction analysis techniques. Requirements Engineering, 2013. 18(3): p. 199-222.
  • Yu, E., Modelling Strategic Relationships for Process Reengineering, in Department of Computer Science. 1995, University of Toronto: Toronto, Canada.
  • Inmon, W.H., Building the Data Warehouse. 4th ed. 2005, Chichester: Wiley.
  • Burg, B., Foundation for Intelligent Physical Agents. 2004.