Phytoremediation

  1. Martín-Cervantes, Pedro Antonio
  2. del Carmen Valls Martínez, María
  3. Santos-Jáen, José Manuel
Book:
Encyclopedia of Sustainable Management

ISBN: 9783030020064 9783030020064

Year of publication: 2022

Pages: 1-7

Type: Book chapter

DOI: 10.1007/978-3-030-02006-4_1103-1 GOOGLE SCHOLAR lock_openOpen access editor

Sustainable development goals

Bibliographic References

  • Bose, S., Rai, V., Bhattacharya, S., Chaudhuri, P., & Bhattacharyya, A. K. (2010). Phyotoremediation: A promising technology of bioremediation for the removal of heavy metal and organic pollutants from the soil. In I. A. Golubev (Ed.), Handbook of phytoremediation (pp. 263–295). New York: Nova Science Publishers.
  • Chakravarty, P., Bauddh, K., & Kumera, M. (2017). Phytoremediation: A multidimensional and ecologically viable practice for the cleanup of environmental contaminants. In K. Bauddh, B. Singh, & J. Korstad (Eds.), Phytoremediation potential of bioenergy plants (pp. 1–46). https://doi.org/10.1007/978-981-10-3084-0_1.
  • Chandra, R., & Kumar, V. (2017). Phytoremediation: A green sustainable technology for industrial waste management. In R. Chandra, N. K. Dubey, & V. Kumar (Eds.), Phytoremediation of environmental pollutants (pp. 1–42). Boca Raton: CRC Press.
  • Cunningham, S. D., & Berti, W. R. (2020). Phytoextraction and phytostabilization: technical, economic, and regulatory considerations of the soil–lead issue. In N. Terry & G. S. Bañuelos (Eds.), Phytoremediation of contaminated soil and water. Boca Raton: CRC Press.
  • Cunningham, S. D., Shann, J. R., Crowley, D. E., & Anderson, T. A. (1997). Phytoremediation of contaminated water and soil. In E. L. Kruger, T. A. Anderson, J. R. Coats, & J. R. Coats (Eds.), Phytoremediation of soil and water contaminants (Vol. 664, pp. 2–17). https://doi.org/10.1021/bk-1997-0664.ch001.
  • Dhir, B. (2013). Phytoremediation: Role of aquatic plants in environmental clean-up. https://doi.org/10.1007/978-81-322-1307-9.
  • E. P. A. (2012). A Citizen’s guide to phytoremediation. Fact sheet EPA 542-F-12-016. United States Environmental Protection Agency. Office of Solid Waste and Emergency Response (5102G). https://semspub.epa.gov/work/HQ/189975.pdf. Accessed 29 Sept 2020.
  • Fernández, R., Carballo, I., Nava, H., Sánchez-Tamés, R., Bertrand, A., & González, A. (2010). Looking for native hyperaccumulator species useful in phytoremediation. In I. A. Golubev (Ed.), Handbook of phytoremediation (pp. 297–330). New York: Nova Science Publishers.
  • Greipsson, S. (2011). Phytoremediation. Nature Education Knowledge, 3(10), 7.
  • Jha, A. B., Misra, A. N., & Sharma, P. (2017). Phytoremediation of heavy metal-contaminated soil using bioenergy crops. In K. Bauddh, B. Singh, & J. Korstad (Eds.), Phytoremediation potential of bioenergy plants (pp. 63–96). https://doi.org/10.1007/978-981-10-3084-0_3.
  • Kadukova, J., & Kavuličova, J. (2010). Phytoremediation of heavy metal contaminated soils – Plant stress assessment. In I. A. Golubev (Ed.), Handbook of phytoremediation (pp. 185–222). New York: Nova Science Publishers.
  • Komives, T., & Gullner, G. (2006). Dendroremediation: The use of trees in cleaning up polluted soils. In M. Mackova, D. Dowling, & T. Macek (Eds.), Phytoremediation and Rhizoremediation (pp. 23–32). https://doi.org/10.1007/978-1-4020-4999-4_3.
  • Kumar, D., Singh, B., & Sharma, Y. C. (2017). Bioenergy and phytoremediation potential of Millettia pinnata. In K. Bauddh, B. Singh, & J. Korstad (Eds.), Phytoremediation potential of bioenergy plants (pp. 169–188). https://doi.org/10.1007/978-981-10-3084-0_6.
  • Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Ramsden, J. J. (2006). Contaminants in the environment. In G. Kvesitadze, G. Khatisashvili, T. Sadunishvili, & J. J. Ramsden (Eds.), Biochemical mechanisms of detoxification in higher plants: Basis of phytoremediation (pp. 1–54). Berlin/Heidelberg: Springer.
  • Landmeyer, J. E. (2011). Introduction to phytoremediation of contaminated groundwater: Historical foundation. Hydrologic Control, and Contaminant Remediation. https://doi.org/10.1007/978-94-007-1957-6.
  • Macek, T., Francova, K., Sura, M., & Mackova, M. (2006). Genetically modified plants with improved properties for phytoremediation purposes. In J. L. Morel, G. Echevarria, & N. Goncharova (Eds.), Phytoremediation of metal-contaminated soils (Vol. 4, pp. 85–108). https://doi.org/10.1007/1-4020-4688-X_4.
  • Nedjimi, B. (2021). Phytoremediation: A sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(286), 7. https://doi.org/10.1007/s42452-021-04301-4.
  • Peuke, A. D., & Rennenberg, H. (2005). Phytoremediation. EMBO Reports, 6(6), 497–501. https://doi.org/10.1038/sj.embor.7400445.
  • Rai, P. K. (2018). Phytoremediation of emerging contaminants in wetlands. Boca Raton: CRC Press.
  • Shah, F. U. R., Ahmad, N., Masood, K. R., Peralta-Videa, J. R., & Ahmad, F. u. D. (2010). Heavy metal toxicity in plants (M. Ashraf, M. Öztürk, & M. S. A. Ahmad, Eds.). https://doi.org/10.1007/978-90-481-9370-7_4.
  • Sharma, J. (2018). Introduction to phytoremediation – A green clean technology. https://ssrn.com/abstract=3177321. Accessed 29 Sept 2020.
  • Ssenku, J. E., Ntale, M., Backeus, I., & Oryem-Origa, H. (2017). Phytoremediation potential of Leucaena leucocephala (Lam.) de Wit. for heavy metal-polluted and heavy metal-degraded environments. In K. Bauddh, B. Singh, & J. Korstad (Eds.), Phytoremediation potential of bioenergy plants (pp. 189–209). https://doi.org/10.1007/978-981-10-3084-0_7.
  • Surriya, O., Saleem, S. S., Waqar, K., Kazi, A. G., & Öztürk, M. (2014). Bio-fuels: A blessing in disguise. In M. Öztürk, M. Ashraf, A. Aksoy, & M. S. A. Ahmad (Eds.), Phytoremediation for green energy (pp. 11–54). https://doi.org/10.1007/978-94-007-7887-0_2.
  • Surriya, O., Saleem, S. S., Waqar, K., & Kazi, A. G. (2015). Phytoremediation of soils: Prospects and challenges. In K. Hakeem, M. Sabir, M. Özturk, & A. Mermut (Eds.), Soil remediation and plants: Prospects and challenges (pp. 1–36). https://doi.org/10.1016/B978-0-12-799937-1.00001-2.
  • Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 939161, 31. https://doi.org/10.1002/047147844X.gw851.
  • Tiwari, J., Kumar, A., & Kumar, N. (2017). Phytoremediation potential of industrially important and biofuel plants: Azadirachta indica and Acacia nilotica. In K. Bauddh, B. Singh, & J. Korstad (Eds.), Phytoremediation potential of bioenergy plants (pp. 211–254). https://doi.org/10.1007/978-981-10-3084-0_8.
  • Visonà, P. (1988). Passing the salt: On the destruction of Carthage again. Classical Philology, 83(1), 41–42.
  • Watanabe, M. E. (1997). Phytoremediation on the brink of commericialization. Environmental Science & Technology, 31(4), 182A–186A. https://doi.org/10.1021/es972219s.
  • Willey, N. (2007). Soils contaminated with radionuclides. In N. Willey (Ed.), Phytoremediation: Methods and reviews (pp. 305–318). Humana Press. https://doi.org/10.1007/978-1-59745-098-0_23.
  • Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 11, 359. https://doi.org/10.3389/fpls.2020.00359.
  • Yin, X., Yuan, L., Liu, Y., & Lin, Z. (2012). Phytoremediation and biofortification: Two sides of one coin. In X. Yin & L. Yuan (Eds.), Phytoremediation and biofortification: Two sides of one coin (pp. 1–6). Springer Netherlands. https://doi.org/10.1007/978-94-007-1439-7_1.