Solving reaction-diffusion problems with explicit Runge–Kutta exponential methods without order reduction

  1. Cano, Begoña
  2. Moreta, María Jesús 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
ESAIM: Mathematical Modelling and Numerical Analysis

ISSN: 2822-7840 2804-7214

Ano de publicación: 2024

Volume: 58

Número: 3

Páxinas: 1053-1085

Tipo: Artigo

DOI: 10.1051/M2AN/2024011 GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: ESAIM: Mathematical Modelling and Numerical Analysis

Resumo

In this paper a technique is given to recover the classical order of the method when explicitexponential Runge–Kutta methods integrate reaction-diffusion problems. In the literature, methods ofhigh enough stiff order for problems with vanishing boundary conditions have been constructed, butthat implies restricting the coefficients and thus, the number of stages and the computational costmay significantly increase with respect to other methods without those restrictions. In contrast, thetechnique which is suggested here is cheaper because it just needs, for any method, to add some termswith information only on the boundaries. Moreover, time-dependent boundary conditions are directlytackled here

Información de financiamento

Financiadores

Referencias bibliográficas

  • Alonso-Mallo, (2017), Appl. Numer. Math., 118, pp. 64, 10.1016/j.apnum.2017.02.010
  • Alonso-Mallo, (2017), IMA J. Numer. Anal., 37, pp. 2091
  • Alonso-Mallo, (2019), J. Comput. Appl. Math., 357, pp. 228, 10.1016/j.cam.2019.02.023
  • Cano, (2018), SIAM J. Num. Anal., 56, pp. 1187, 10.1137/17M1124279
  • Cano, (2022), Math. Methods Appl. Sci., 45, pp. 11319, 10.1002/mma.8451
  • Cano, (2022), BIT Numer. Math., 62, pp. 431, 10.1007/s10543-021-00879-8
  • Connors, (2014), Comput. Methods Appl. Mech. Eng., 272, pp. 181, 10.1016/j.cma.2014.01.005
  • Einkemmer, (2015), SIAM J. Sci. Comput., 37, pp. A1577, 10.1137/140994204
  • Einkemmer, (2016), SIAM J. Sci. Comput., 38, pp. A3471, 10.1137/16M1056250
  • Faou, (2015), IMA J. Numer. Anal., 35, pp. 161, 10.1093/imanum/dru002
  • Göckler, (2013), SIAM J. Numer. Anal., 53, pp. 2189, 10.1137/12089226X
  • Hairer E., Nörsett S. and Wanner G., Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd revised edition. Springer (2000).
  • Hochbruck, (2005), Appl. Numer. Math., 53, pp. 323, 10.1016/j.apnum.2004.08.005
  • Hochbruck, (2005), SIAM J. Num. Anal., 43, pp. 1069, 10.1137/040611434
  • Hochbruck, (2010), Acta Numer., 19, pp. 209, 10.1017/S0962492910000048
  • Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press (1992).
  • Krogstad, (2005), J. Comput. Phys., 203, pp. 72, 10.1016/j.jcp.2004.08.006
  • Lawson, (1967), SIAM J. Numer. Anal., 4, pp. 372, 10.1137/0704033
  • LeVeque, (1983), Math. Comput., 40, pp. 469, 10.1090/S0025-5718-1983-0689466-8
  • Luan V.T. and Ostermann A., Stiff order conditions for exponential Runge–Kutta methods of order five, in Modeling, Simulation and Optimization of Complex Processes-HPSC. Springer (2012) 133–143.
  • Luan, (2014), J. Comput. Appl. Math., 262, pp. 361, 10.1016/j.cam.2014.01.001
  • Minchev B.V. and Wright W.M., A review of exponential integrators for first order semi-linear problems. Preprint NTNU-N-2005-2 (2005).
  • Niesen, (2012), ACM Trans. Math. Softw., 38, pp. 1, 10.1145/2168773.2168781
  • Strikwerda J.C., Finite Difference Schemes and Partial Differential Equations. Wadsworth & Brooks, USA (1989).
  • Cano B. & Moreta M. J., Matlab Code for “Solving reaction-diffusion problems with explicit exponential Runge-Kutta methods without order reduction”, https://github.com/mjmoreta/EERK-methods.