Financial boundary conditions in a continuous model with discrete-delay for pricing commodity futures and its application to the gold market

  1. Gómez-Valle, Lourdes 1
  2. López-Marcos, Miguel Ángel 1
  3. Martínez-Rodríguez, Julia 1
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Revue:
Chaos, Solitons & Fractals

ISSN: 0960-0779

Année de publication: 2024

Volumen: 187

Pages: 115476

Type: Article

DOI: 10.1016/J.CHAOS.2024.115476 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Chaos, Solitons & Fractals

Résumé

In this work, we approach the solution of a differential problem for pricing commodity futures when the spot price follows a stochastic diffusion process with memory, that is, it depends on two discrete times: the present instant and a delayed one. In this kind of models, a closed-form solution is not feasible to obtain and, in most of the cases, numerical methods should be applied. To this end, it is normal to introduce a bounded domain for the state variable, so suitable boundary conditions have to be established. The conditions based on mathematical reasons often introduce difficulties in the boundary and poor accuracy. Here, we propose new nonstandard boundary conditions based on some financial reasons and then, we face the numerical solution of the problem that arises. Some experiments are presented which show that the drawbacks in the behavior of the solutions are overcome, providing more accurate futures prices. This new procedure is implemented in order to obtain a more precise valuation of gold futures contracts traded on the Commodity Exchange Inc. (US).

Information sur le financement

Financeurs

Références bibliographiques

  • Bessler, (2015), J Bank Financ, 60, pp. 1, 10.1016/j.jbankfin.2015.06.021
  • Hull, (2018)
  • Back, (1997), Int J Theor Appl Finance, 52, pp. 923
  • Bessembinder, (1995), J Finance, 50, pp. 361, 10.1111/j.1540-6261.1995.tb05178.x
  • Nielsen, (2004), Rev Deriv Res, 7, pp. 5, 10.1023/B:REDR.0000017026.28316.c8
  • Hilliar, (1995), Rev Financ, 50, pp. 27, 10.1111/fire.12059
  • Yan, (2002), Rev Deriv Res, 5, pp. 251, 10.1023/A:1020871616158
  • Gómez-Valle, (2017), J Comput Appl Math, 309, pp. 435, 10.1016/j.cam.2015.12.028
  • Fama, (1987), J Bus, 60, pp. 55, 10.1086/296385
  • Back, (2013), J Bank Financ, 37, pp. 273, 10.1016/j.jbankfin.2012.08.025
  • Lucia, (2002), Rev Deriv Res, 5, pp. 5, 10.1023/A:1013846631785
  • Cartea, (2005), Appl Math Finance, 12, pp. 313, 10.1080/13504860500117503
  • Lingfei, (2016), Quant Finance, 7, pp. 1089
  • Gómez-Valle, (2018), J Comput Appl Math, 309, pp. 435, 10.1016/j.cam.2015.12.028
  • Shreve, (2008)
  • Schwartz, (1997), J Finance, 52, pp. 923, 10.1111/j.1540-6261.1997.tb02721.x
  • Duffy, (2006)
  • Baamonde-Seoane, (2023), Commun Nonlinear Sci Numer Simul, 118, 10.1016/j.cnsns.2022.107066
  • Baamonde-Seoane, (2023), J Comput Appl Math, 422, 10.1016/j.cam.2022.114891
  • Haque, (2014), Resour Policy, 39, pp. 115, 10.1016/j.resourpol.2013.12.004
  • Aminrostamkolaee, (2017), Resour Policy, 52, pp. 296, 10.1016/j.resourpol.2017.04.004
  • Gómez-Valle, (2020), Math Methods Appl Sci, 43, pp. 7993, 10.1002/mma.5815
  • Oksendal, (2000)
  • Protter, (2007)
  • Kwok, (2008)
  • Gómez-Valle, (2023), Math Methods Appl Sci, pp. 1
  • Tambue, (2015), Commun Nonlinear Sci Numer Simul, 20, pp. 281, 10.1016/j.cnsns.2014.05.010
  • Nomikos, (2013), Transp Res E, 51, pp. 82, 10.1016/j.tre.2012.12.001
  • Agrawal, (2020), Mathematics, 8, pp. 1932, 10.3390/math8111932
  • Kloeden, (1992)
  • O’Connor, (2015), Int Rev Financ Anal, 41, pp. 186, 10.1016/j.irfa.2015.07.005
  • Geman, (2013), Resour Policy, 38, pp. 18, 10.1016/j.resourpol.2012.06.014
  • Hendersen, (2015), Rev Financ Stud, 28, pp. 1285, 10.1093/rfs/hhu091
  • Härdle, (1999), vol. 19
  • Glasserman, (2004)