Isomorfismos de retículos de álgebras de Bernstein
- Sánchez, J. A.
- Consuelo Martínez López Director/a
Universitat de defensa: Universidad de Oviedo
Any de defensa: 1995
- Alberto Pérez de Vargas Luque President/a
- Cristina Martínez Calvo Secretari/ària
- José Manuel Correas Dobato Vocal
- Juan Gabriel Tena Ayuso Vocal
- José María Barja Pérez Vocal
Tipus: Tesi
Resum
EL OBJETO DE LA TESIS ES EL ESTUDIO DE LAS PROPIEDADES DE UN ALGEBRA DE BERNSTEIN QUE SE CONSERVAN A TRAVES DE UN ISOMORFISMO DE RETICULOS, ASI COMO LA DETERMINACION DE CONDICIONES ALGEBRAICAS QUE PERMITAN LA DEFINICION DE UN ISOMORFISMO DE RETICULOS ENTRE DOS ALGEBRAS DE BERNSTEIN, EL PRIMER PUNTO QUE SE ABORDA ES LA CARACTERIZACION DE LAS ALGEBRAS DE BERNSTEIN PARA LAS CUALES PUEDE HABER DEFINIDO UN ISOMORFISMO DE RETICULOS EN EL CUAL LOS NUCLEOS DE LOS HOMOMORFISMOS PESO NO SE CORRESPONDAN. SE PRUEBA QUE TALES ALGEBRAS SON NECESARIAMENTE EXCLUSIVAS Y SU TIPO ES (1+R, S) CON S = 0 O 1. ASIMISMO SE PRUEBA LA EXISTENCIA DE UN ISOMORFISMO DE RETICULOS CONSERVANDO EL NUCLEO ENTRE DOS ALGEBRAS DE BERNSTEIN CUALESQUIERA LIGADAS POR UN ISOMORFISMO DE RETICULOS, RESULTADO CLAVE PARA EL ESTUDIO POSTERIOR. SE PRUEBA TAMBIEN QUE LAS PROPIEDADES DE SER JORDAN, NORMAL, ORTOGONAL Y GENETICA SE CONSERVAN POR ISOMORFISMOS DE RETICULOS. FINALMENTE, SE PRUEBA QUE LA EXISTENCIA DE UN ISOMORFISMO DE RETICULOS PRODUCE UN ISOMORFISMO ENTRE LOS CUADRADOS. PALABRAS CLAVE: RETICULO, ALGEBRA DE BERNSTEIN, ISOMORFISMO DE RETICULOS.