Isomorfismos de retículos de álgebras de Bernstein
- Sánchez, J. A.
- Consuelo Martínez López Director
Defence university: Universidad de Oviedo
Year of defence: 1995
- Alberto Pérez de Vargas Luque Chair
- Cristina Martínez Calvo Secretary
- José Manuel Correas Dobato Committee member
- Juan Gabriel Tena Ayuso Committee member
- José María Barja Pérez Committee member
Type: Thesis
Abstract
EL OBJETO DE LA TESIS ES EL ESTUDIO DE LAS PROPIEDADES DE UN ALGEBRA DE BERNSTEIN QUE SE CONSERVAN A TRAVES DE UN ISOMORFISMO DE RETICULOS, ASI COMO LA DETERMINACION DE CONDICIONES ALGEBRAICAS QUE PERMITAN LA DEFINICION DE UN ISOMORFISMO DE RETICULOS ENTRE DOS ALGEBRAS DE BERNSTEIN, EL PRIMER PUNTO QUE SE ABORDA ES LA CARACTERIZACION DE LAS ALGEBRAS DE BERNSTEIN PARA LAS CUALES PUEDE HABER DEFINIDO UN ISOMORFISMO DE RETICULOS EN EL CUAL LOS NUCLEOS DE LOS HOMOMORFISMOS PESO NO SE CORRESPONDAN. SE PRUEBA QUE TALES ALGEBRAS SON NECESARIAMENTE EXCLUSIVAS Y SU TIPO ES (1+R, S) CON S = 0 O 1. ASIMISMO SE PRUEBA LA EXISTENCIA DE UN ISOMORFISMO DE RETICULOS CONSERVANDO EL NUCLEO ENTRE DOS ALGEBRAS DE BERNSTEIN CUALESQUIERA LIGADAS POR UN ISOMORFISMO DE RETICULOS, RESULTADO CLAVE PARA EL ESTUDIO POSTERIOR. SE PRUEBA TAMBIEN QUE LAS PROPIEDADES DE SER JORDAN, NORMAL, ORTOGONAL Y GENETICA SE CONSERVAN POR ISOMORFISMOS DE RETICULOS. FINALMENTE, SE PRUEBA QUE LA EXISTENCIA DE UN ISOMORFISMO DE RETICULOS PRODUCE UN ISOMORFISMO ENTRE LOS CUADRADOS. PALABRAS CLAVE: RETICULO, ALGEBRA DE BERNSTEIN, ISOMORFISMO DE RETICULOS.