Optimization of solid waste anaerobic digestion using prediction tools

  1. Nielfa González, Ana
Supervised by:
  1. María Fernández-Polanco Director

Defence university: Universidad de Valladolid

Fecha de defensa: 03 April 2014

  1. Fernando Fernández-Polanco Chair
  2. María del Mar Peña Miranda Secretary
  3. Victorino Díez Blanco Committee member
  4. Belén Fernández García Committee member
  5. Francisco Raposo Betines Committee member

Type: Thesis

Teseo: 358915 DIALNET


Waste from urban and industrial activities is considered a substantial problem due to the population increase and the need to acomplish the stringent legislation, being anaerobic digestion an optimum biological treatment for these wastes obtaining energy. In this thesis the optimization of the anaerobic digestion for solid wastes have been studied using different tools to save the time and cost derived from this process. Optimum operational conditions were established for OFMSW, and its co-digestion with biological sludge has improved the biogas production in 25% while inrcreases of 88% were obtained in the co-digestion of grease and biological sludge. First-order and Gompertz model have demostrated to be the most suitable for the experimental results offering kinetic information, being Gompertz model capable of predicting productivity and behaviour at the 7th day of experiment. Organic waste composition were also useful to determine theoretical biogas production with an error of less than 10%. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J.B. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology 59, 927-934. Boulanger, A., Pinet, E., Bouixc, M., Bouchez, T., Mansour, A.A. 2012. Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management Journal 32, 2258-2265. Raposo, F., Fernández-Cegrí, V., De la Rubia, M.A., Borja, R., Béline, F., Cavinato, C., Demirer, G., Fernández, B., Fernández-Polanco, M., Frigon, J.C., Ganesh, R., Kaparaju, P., Koubova, J., Méndez, R., Menin, G., Peene, A., Scherer, P., Torrijos, M., Uellendahl, H., Wierinckm, I. and De Wilde,V. 2011. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. Journal of Chemical Technology and Biotechnology 86, 1088-1098.