Selección de Canales en Sistemas BCI basados en Potenciales P300 mediante Inteligencia de Enjambre

  1. Martínez-Cagigal, V.
  2. Hornero, R.
Journal:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Year of publication: 2017

Volume: 14

Issue: 4

Pages: 372-383

Type: Article

DOI: 10.1016/J.RIAI.2017.07.003 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista iberoamericana de automática e informática industrial ( RIAI )

Abstract

Brain-Computer Interfaces (BCI) are direct communication pathways between the brain and the environment that translate certain features, which correspond to users’ intentions, into device control commands. Channel selection in BCI systems is essential to avoid over-fitting, to reduce the computational cost and to increase the users’ comfort. Although several algorithms have previously developed for that purpose, metaheuristics based on swarm intelligence have not been exploited yet in P300-based BCI systems. In this study, a comparative among five different swarm methods, based on the behavior of biological systems, is shown. Those methods have been applied in order to optimize the channel selection procedure in this kind of systems, and have been tested with the ‘III BCI Competition 2005’ database II. Results show that the five methods can achieve similar or even higher accuracies than that obtained without performing any channel selection procedure. Owing to the fact that all the applied methods are able to drastically reduce the required number of channels without compromising the system performance, as well as to overcome the common 8-channel set and the backward elimination algorithm, we conclude that all of them are suitable for use in the P300-BCI systems channel selection procedure.

Bibliographic References

  • Bhattacharjee, K. K., Sarmah, S. P., 2015. A binary firefly algorithm for knapsack problems. En: 2015 Int. Conf. Ind. Eng. Eng. Manag. pp. 73–77. DOI: 10.1109/IEEM.2015.7385611
  • Blankertz, B., Muller, K.-R., Krusienski, D. J., Schalk, G., Wolpaw, J. R., Schlogl, A., Pfurtscheller ¨ , G., Millan, ´ J. D. R., Schroder ¨ , M., Birbaumer, N., 2006. The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14 (2), 153–159. DOI: 10.1109/TNSRE.2006.875642
  • Bonabeau, E., Dorigo, M., Theraulaz, G., 1999. Swarm intelligence: from natural to artificial systems. Oxford University Press. DOI: 10.1007/s13398-014-0173-7.2
  • Brownlee, J., 2011. Clever Algorithms: Nature-Inspired Programming Recipes, 2nd Edition. DOI: 10.1017/CBO9781107415324.004
  • Cecotti, H., Rivet, B., Congedo, M., Jutten, C., Bertrand, O., Maby, E., Mattout, J., 2011. A robust sensor-selection method for P300 brain-computer interfaces. J. Neural Eng. 8 (1), 016001. DOI: 10.1088/1741-2560/8/1/016001
  • Clerc, M., Kennedy, J., 2002. The Particle Swarm–Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans. Evol. Comput. 6 (1), 58–73. DOI: 10.1109/4235.985692
  • Colwell, K. A., Ryan, D. B., Throckmorton, C. S., Sellers, E. W., Collins, L. M., 2014. Channel selection methods for the P300 Speller. J. Neurosci. Methods 232, 6–15. DOI: 10.1016/j.jneumeth.2014.04.009
  • Dorigo, M., Di Caro, G., 1999. The Ant Colony Optimization Meta-Heuristic. New Ideas Optim. 2, 11–32. DOI: 10.1109/CEC.1999.782657
  • Dorigo, M., Stutzle, ¨ T., 2004. Ant Colony Optimization. The MIT press.
  • Farwell, L. A., Donchin, E., 1988. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70 (6), 510–523. DOI: 10.1016/0013-4694(88)90149-6
  • Gonzalez, A., Nambu, I., Hokari, H., Iwahashi, M., Wada, Y., 2013. Towards the classification of single-trial event-related potentials using adapted wavelets and particle swarm optimization. Proc. - 2013 IEEE Int. Conf. Syst. Man, Cybern. SMC 2013, 3089–3094. DOI: 10.1109/SMC.2013.527
  • Guyon, I., Elisseeff, A., 2003. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 3 (3), 1157–1182. DOI: 10.1016/j.aca.2011.07.027
  • Jin, J., Allison, B. Z., Brunner, C., Wang, B., Wang, X., Zhang, J., Neuper, C., Pfurtscheller, G., 2010. P300 Chinese input system based on Bayesian LDA. Biomed. Tech. 55 (1), 5–18. DOI: 10.1515/BMT.2010.003
  • Jobson, J. D., 1991. Applied multivariate data analysis. Volume I: Regression and Experimental Design, 4th Edition. Vol. 1. Springer.
  • Karaboga, D., 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization. Tech. rep., Erciyes University.
  • Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N., 2014. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42 (1), 21–57. DOI: 10.1007/s10462-012-9328-0
  • Kee, C.-Y., Ponnambalam, S., Loo, C.-K., 2015. Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161, 120–131. DOI: 10.1016/j.neucom.2015.02.057
  • Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE Int. Conf. 4, 1942–1948 vol.4. DOI: 10.1109/ICNN.1995.488968
  • Kennedy, J., Eberhart, R., 1997. A Discrete Binary Version of the Particle Swarm Algorithm. 1997 IEEE Int. Conf. Syst. Man, Cybern. Comput. Cybern. Simul. 5, 4–8. DOI: 10.1109/ICSMC.1997.637339
  • Kennedy, J., Eberhart, R. C., Shi, Y., 2001. Swarm Intelligence. Vol. 2. Academic Press. DOI: 10.4249/scholarpedia.1462
  • Kiran, M. S., 2015. The continuous artificial bee colony algorithm for binary optimization. Appl. Soft Comput. J. 33, 15–23. DOI: 10.1016/j.asoc.2015.04.007
  • Konak, A., Coit, D. W., Smith, A. E., 2006. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91 (9), 992–1007. DOI: 10.1016/j.ress.2005.11.018
  • Kong, M., Tian, P., Kao, Y., 2008. A new ant colony optimization algorithm for the multidimensional Knapsack problem. Comput. Oper. Res. 35 (8), 2672– 2683. DOI: 10.1016/j.cor.2006.12.029
  • Kruger, T. J., Davidovic, T., Teodorovi ´ c, D., ´ Selmi ˇ c, M., 2016. The bee colony ´ optimization algorithm and its convergence. Int. J. Bio-Inspired Comput. 8 (5), 340–354.
  • Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., Wolpaw, J., 2008. Toward enhanced P300 speller performance. J. Neurosci. Methods 167 (1), 15–21. DOI: 10.1016/j.jneumeth.2007.07.017
  • Kubler, A., Birbaumer, N., 2008. Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clin. Neurophysiol. 119 (11), 2658–2666. DOI: 10.1016/j.clinph.2008.06.019
  • Kubler, A., Nijboer, F., Birbaumer, N., 2007. Brain-Computer Interfaces for communication and motor control – perspectives on clinical application. En: Toward Brain-Computer Interfacing, 1st Edition. MA: The MIT Press, pp. 373–391.
  • Martínez-Cagigal, V., Gomez-Pilar, J., Alvarez, D., Hornero, R., 2016. ´ An asynchronous P300-based brain-computer interface web browser for severely disabled people. IEEE Transactions on Neural Systems and Rehabilitation Engineering (Aceptado). DOI: 10.1109/TNSRE.2016.2623381
  • Perseh, B., Sharafat, A. R., jun 2012. An Efficient P300-based BCI Using Wavelet Features and IBPSO-based Channel Selection. J. Med. Signals Sens. 2 (3), 128–143.
  • Pham, D. T., Ghanbarzadeh, A., Koc¸, E., Otri, S., Rahim, S., Zaidi, M., 2006. The Bees Algorithm - A Novel Tool for Complex Optimisation Problems. Intell. Prod. Mach. Syst. - 2nd I*PROMS Virtual Int. Conf., 454–459. DOI: 10.1016/B978-008045157-2/50081-X
  • Rakotomamonjy, A., Guigue, V., 2008. BCI Competition III: Dataset II - Ensemble of SVMs for BCI P300 Speller. IEEE Trans. Biomed. Eng. 55 (3), 1147–1154.
  • Rivet, B., Cecotti, H., Maby, E., Mattout, J., 2012. Impact of spatial filters during sensor selection in a visual P300 brain-computer interface. Brain Topogr. 25 (1), 55–63. DOI: 10.1007/s10548-011-0193-y
  • Rivet, B., Cecotti, H., Phlypo, R., Bertrand, O., Maby, E., Mattout, J., 2010. EEG sensor selection by sparse spatial filtering in P300 speller BrainComputer Interface. 2010 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC’10, 5379–5382. DOI: 10.1109/IEMBS.2010.5626485
  • Salvaris, M., Sepulveda, F., 2009. Visual modifications on the p300 speller bci paradigm. Journal of neural engineering 6 (4), 046011.
  • Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., Wolpaw, J. R., 2004. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51 (6), 1034–1043. DOI: 10.1109/TBME.2004.827072
  • Witten, I. H., Frank, E., 2011. Data Mining: Practical Machine Learning Tools and Techniques, 3rd Edition. Morgan Kaufmann.
  • Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., Vaughan, T. M., 2000. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8 (2), 164–173. DOI: 10.1109/TRE.2000.847807
  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., Vaughan, T. M., 2002. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113 (6), 767–91. DOI: 10.1016/S1388-2457(02)00057-3
  • Xu, M., Qi, H., Ma, L., Sun, C., Zhang, L., Wan, B., Yin, T., Ming, D., 2013. Channel Selection Based on Phase Measurement in P300-Based Brain-Computer Interface. PLoS One 8 (4), 1–9. DOI: 10.1371/journal.pone.0060608
  • Yang, X. S., 2009. Firefly Algorithms for Multimodal Optimization. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 5792 LNCS, 169–178. DOI: 10.1007/978-3-642-04944-6 14
  • Yang, X.-S., 2014. Nature-Inspired Optimization Algorithms, 1st Edition. Elsevier Inc.
  • Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A. H., Karamanoglu, M., 2013. Swarm Intelligence and Bio-Inspired Computation: Theory and Applications, 1st Edition. Elsevier Inc. DOI: 10.1016/B978-0-12-405163-8.00020-X
  • Yu, T., Yu, Z., Gu, Z., Li, Y., 2015. Grouped Automatic Relevance Determination and Its Application in Channel Selection for P300 BCIs. IEEE Trans. Neural Syst. Rehabil. Eng. 23 (6), 1068–1077. DOI: 10.1109/TNSRE.2015.2413943