Analysis of biochars produced from the gasification of pinus patula pellets and chips as soil amendments

  1. Jonatan Gutiérrez 1
  2. Ainhoa Rubio-Clemente 2
  3. Juan F. Pérez 3
  1. 1 Universidad de Antioquia – UdeA, Facultad de Ingeniería, Grupo de Manejo Eficiente de la Energía – GIMEL, Medellín, Colombia // Universidad de Antioquia – UdeA, Facultad de Ingeniería, Grupo de Investigación Energía Alternativa – GEA, Medellín, Colombia
  2. 2 Universidad de Antioquia – UdeA, Facultad de Ingeniería, Grupo de Investigación Energía Alternativa – GEA, Medellín, Colombia
  3. 3 Universidad de Antioquia – UdeA, Facultad de Ingeniería, Grupo de Manejo Eficiente de la Energía – GIMEL, Medellín, Colombia //
Revista:
Maderas: Ciencia y tecnología

ISSN: 0717-3644 0718-221X

Año de publicación: 2022

Volumen: 24

Número: 1

Tipo: Artículo

Otras publicaciones en: Maderas: Ciencia y tecnología

Resumen

En este trabajo se caracterizó el biocarbón (BC), subproducto del proceso de gasificación en lecho fijo de pellets (PL) y astillas (CH) de madera de Pinus patula, como enmendador de suelos. Las propiedades fisicoquímicas y el contenido mineral de las cenizas del biocarbón de pellets (PL-BC) y del biocarbón de astillas (CH-BC) se analizaron siguiendo la norma técnica colombiana NTC5167. El área superficial BET de los BC fue de 367,33 m2/g y 233,56 m2/g, para el PL-BC y el CH-BC, respectivamente, y el volumen de poro fue de 0,20 cm3/g para el PL-BC y de 0,13 cm3/g para el CH-BC. Estas características favorecen el aumento de la capacidad de retención de agua (WHC) de los BCs. El pH (8,8-9,0), la WHC (219 % - 186,4 %), el carbono orgánico total (33,8 % - 23,9 %), la presencia de metaloides (Ca, Mg, K, Mn, Al, Si y Fe), el contenido de cenizas (1,92 wt% - 2,74 wt%) y humedad (11,13 wt% - 11,63 wt%) para ambos BCs, cumplen con lo establecido por la norma NTC5167. Además, la presencia de micro y macronutrientes, como el Fe y el fósforo (P), y el pH alcalino, hacen viable utilizar estos BCs como enmendadores de suelos con carácter ácido

Referencias bibliográficas

  • Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Mahmood, A.; Zia-ur-Rehman, M.; Ibrahim, M.; Arshad, M.; Qayyum, M.F. 2018. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148: 825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063
  • Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99: 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
  • Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131: 374–379. https://doi.org/10.1016/j.biortech.2012.12.165
  • Almaroai, Y.A.; Usman, A.R.A.; Ahmad, M.; Moon, D.H.; Cho, J.S.; Joo, Y.K.; Jeon, C.; Lee, S.S.; Ok, Y.S. 2014. Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ Earth Sci 71(3): 1289–1296. https://doi.org/10.1007/s12665-013-2533-6
  • American Society for Testing and Materials. 2008. ASTM D5373-08: Standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal. ASTM. West Conshohocken, PA, USA. https://www.astm.org/DATABASE.CART/HISTORICAL/D5373-08.htm
  • Baptista, I.; Miranda, I.; Quilhó, T.; Gominho, J.; Pereira, H. 2013. Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Ind Crops Prod 50: 166–175. https://doi.org/10.1016/j.indcrop.2013.07.004
  • Bayu, D.; Dejene, A.; Alemayehu, R.; Gezahegn, B. 2017. Improving available phosphorus in acidic soil using biochar. J Soil Sci Environ Manag 8(4): 87–94. https://doi.org/10.5897/jssem2015.0540
  • Blume, H; Brümmer, G.W; Fleige, H; Horn, R; Kandeler, E; Kögel-knabner, I; Kretzschmar, R; Stahr, K; Wilke, B. 2016. Soil Science 16th ed. Springer. https://doi.org/10.1007/978-3-642-30942-7
  • Brewer, C.E.; Unger, R.; Schmidt-Rohr, K.; Brown, R.C. 2011. Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4(4): 312–323. https://doi.org/10.1007/s12155-011-9133-7
  • Buss, W.; Shepherd, J.G.; Heal, K.V.; Mašek, O. 2018. Spatial and temporal microscale pH change at the soil-biochar interface. Geoderma 331: 50–52. https://doi.org/10.1016/j.geoderma.2018.06.016
  • Detmann, K.C.; Araújo, W.L.; Martins, S.C.V.; Sanglard, L.M.V.P.; Reis, J.V.; Detmann, E.; Rodrigues, F.Á.; Nunes-Nesi, A.; Fernie, A.R.; Damatta, F.M. 2012. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196(3): 752-762. https://doi.org/10.1111/j.1469-8137.2012.04299.x
  • Díez, H.E.; Pérez, J.F. 2019. Effects of wood biomass type and airflow rate on fuel and soil amendment properties of biochar produced in a top-lit updraft gasifier. Environ Prog Sustain Energy 38(4): 1–14. https://doi.org/10.1002/ep.13105
  • Díez, H.E.; Pérez, J.F. 2017. Physicochemical characterization of representative firewood species used for cooking in some Colombian regions. Int J Chem Eng 2017: 1–13. https://doi.org/10.1155/2017/4531686
  • Dunnigan, L.; Morton, B.J.; Ashman, P.J.; Zhang, X.; Kwong, C.W. 2018. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes. Waste Manag 77: 59–66. https://doi.org/10.1016/j.wasman.2018.05.004
  • European Biochar Certificate. EBC. 2019. European Biochar Certificate - Guidelines for a Sustainable Production of Biochar. Eur Biochar Found, Arbaz, Switzerland.. https://doi.org/10.13140/RG.2.1.4658.7043
  • Fang, Q.; Chen, B.; Lin, Y.; Guan, Y. 2014. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ Sci Technol 48(1): 279–288. https://doi.org/10.1021/es403711y
  • Food and Agriculture Organization of the United Nations. FAO. 2019. FAOSTAT - Forestry production and trade. http://www.fao.org/faostat/en/#data/FO/visualize (accessed 4.14.20).
  • Fischer, B.M.C.; Manzoni, S.; Morillas, L.; Garcia, M.; Johnson, M.S.; Lyon, S.W. 2019. Improving agricultural water use efficiency with biochar – A synthesis of biochar effects on water storage and fluxes across scales. Sci Total Environ 657: 853-862. https://doi.org/10.1016/j.scitotenv.2018.11.312
  • Godlewska, P.; Ok, Y.S.; Oleszczuk, P. 2021. The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils. J Hazard Mater 403: 123833. https://doi.org/10.1016/j.jhazmat.2020.123833
  • Gomez-Eyles, J.L.; Beesley, L.; Moreno-Jiménez, E.; Ghosh, U.; Sizmur, T. 2013. The potential of biochar amendments to remediate contaminated soils. In Biochar and Soil Biota. Ladygina, N.; Rineau, F. (Eds.). Chapter 4. CRC Press https://doi.org/10.13140/2.1.1074.9448
  • González, W.A.; López, D.; Pérez, J.F. 2020. Biofuel quality analysis of fallen leaf pellets: Effect of moisture and glycerol contents as binders. Renew Energy 147: 1139–1150. https://doi.org/10.1016/j.renene.2019.09.094
  • González, W.A.; Pérez, J.F. 2019. CFD analysis and characterization of biochar produced via fixed-bed gasification of fallen leaf pellets. Energy 186(2019): 115904. https://doi.org/10.1016/j.energy.2019.115904
  • González, W.A.; Pérez, J.F.; Chapela, S.; Porteiro, J. 2018. Numerical analysis of wood biomass packing factor in a fixed-bed gasification process. Renew Energy 121: 579–589. https://doi.org/10.1016/j.renene.2018.01.057
  • Gunarathne, V.; Senadeera, A.; Gunarathne, U.; Biswas, J.K.; Almaroai, Y.A.; Vithanage, M. 2020. Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar 2(1): 107–120. https://doi.org/10.1007/s42773-020-00036-4
  • Gutiérrez, J.; Rubio-Clemente, A.; Pérez, J.F. 2021. Effect of main solid biomass commodities of patula pine on biochar properties produced under gasification conditions. Ind Crops Prod 160(2021): 113123. https://doi.org/10.1016/j.indcrop.2020.113123
  • Hansen, V.; Müller-Stöver, D.; Ahrenfeldt, J.; Holm, J.K.; Henriksen, U.B.; Hauggaard-Nielsen, H. 2015. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenerg 72(1): 300–308. https://doi.org/10.1016/j.biombioe.2014.10.013
  • Hernández, J.J.; Lapuerta, M.; Monedero, E. 2016. Characterisation of residual char from biomass gasification: effect of the gasifier operating conditions. J Clean Prod 138: 83–93. https://doi.org/10.1016/j.jclepro.2016.05.120
  • Instituto Colombiano de Normas Técnicas y Certificación. ICONTEC. 2011. Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo - NTC 5167 Standard (In Spanish). Bogotá, Colombia. https://tienda.icontec.org/gp-productos-para-la-industria-agricola-productos-organicos-usados-como-abonos-o-fertilizantes-y-enmiendas-o-acondicionadores-de-suelo-ntc5167-2011.html
  • Instituto Nacional de Salud. INS. 2019. Carga de enfermedad ambiental en Colombia (In Spanish). Observatorio Nacional de Salud, Bogotá, Colombia. https://www.ins.gov.co/Direcciones/ONS/Resumenes%20Ejecutivos/Resumen%20ejecutivo%20informe10%20Carga%20de%20enfermedad%20en%20Colombia.pdf (accessed 9.30.19).
  • International Biochar Initiative. 2019. What is biochar? https://biochar-international.org/biochar-in-developing-countries/ (accessed 6.3.19).
  • Kamal Baharin, N.S.; Koesoemadinata, V.C.; Nakamura, S.; Azman, N.F.; Muhammad Yuzir, M.A.; Md Akhir, F.N.; Iwamoto, K.; Yahya, W.J.; Othman, N.; Ida, T.; Hara, H. 2020. Production of Bio-Coke from spent mushroom substrate for a sustainable solid fuel. Biomass Convers Biorefin https://doi.org/10.1007/s13399-020-00844-5
  • Keiluweit, M.; Nico, P.S.; Johnson, M.; Kleber, M. 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4): 1247–1253. https://doi.org/10.1021/es9031419
  • Lee, J.W.; Kidder, M.; Evans, B.R.; Paik, S.; Buchanan, A.C.; Garten, C.T.; Brown, R.C. 2010. Characterization of biochars produced from cornstovers for soil amendment. Environ Sci Technol 44(20): 7970–7974. https://doi.org/10.1021/es101337x
  • Lim, J.E.; Ahmad, M.; Usman, A.R.A.; Lee, S.S.; Jeon, W.T.; Oh, S.E.; Yang, J.E.; Ok, Y.S. 2013. Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil. Environ Earth Sci 69(1): 11–20. https://doi.org/10.1007/s12665-012-1929-z
  • Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. 2012. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1): 147–154. https://doi.org/10.1016/j.fuel.2011.07.019
  • Mia, S.; Uddin, N.; Al Mamun Hossain, S.A.; Amin, R.; Mete, F.Z.; Hiemstra, T. 2015. Production of Biochar for Soil Application: A Comparative Study of Three Kiln Models. Pedosphere 25(5): 696–702. https://doi.org/10.1016/S1002-0160(15)30050-3
  • Ministerio de Agricultura y Desarrollo Rural. Minagricultura. 2015. Colombia tiene un potencial forestal de 24 millones de hectáreas para explotación comercial (In Spanish). Bogotá, Colombia. https://www.minagricultura.gov.co/noticias/Paginas/Colombia-tiene-un-potencial-forestal.aspx (accessed 4.14.20).
  • Nanda, S.; Mohanty, P.; Pant, K.K.; Naik, S.; Kozinski, J.A.; Dalai, A.K. 2013. Characterization of North American lignocellulosic biomass and biochars in terms of their Candidacy for alternate renewable fuels. Bioenergy Res 6(2): 663–677. https://doi.org/10.1007/s12155-012-9281-4
  • Novak, J.M.; Lima, I.; Xing, B.; Gaskin, J.; Steiner, C.; Das, K.; Ahmedna, M.; Rehrah, D.; Watts, D.; Busscher, W.; Schomberg, H. 2009. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3(1): 195–206. https://openjournals.neu.edu/aes/journal/article/view/v3art5/v3p195-206
  • Nsamba, H.K.; Hale, S.E.; Cornelissen, G.; Bachmann, R.T. 2015. Designing and Performance Evaluation of Biochar Production in a Top-Lit Updraft Up-scaled Gasifier. J Sustain Bioenergy Syst 5(2): 41–55. https://doi.org/10.4236/jsbs.2015.52004
  • Ok, Y; Uchimiya, S; Chang, S; Bolan, N. 2016. Biochar: production, characterization, and applications. 1st ed. CRC Press Taylor & Francis Group. https://doi.org/10.1201/b18920
  • Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G. 2014. Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review. Solid Earth 5(1): 65–75. https://doi.org/10.5194/se-5-65-2014
  • Pérez, J.F.; Pelaez-Samaniego, M.R.; Garcia-Perez, M. 2019. Torrefaction of fast-growing Colombian wood species. Waste Biomass Valorization 10(6): 1655–1667. https://doi.org/10.1007/s12649-017-0164-y
  • Pérez, J.F; Ramírez, G.L. 2019. Aplicaciones agroenergéticas con maderas cultivadas y oportunidades preliminares de mercado (In Spanish), 1st ed. ed, Editorial Universidad de Antioquia. http://bibliotecadigital.udea.edu.co/handle/10495/10959
  • Protásio, T. de P.; Bufalino, L.; Denzin, G.H.; Junior, M.G.; Trugilho, P.F.; Mendes, L.M. 2013. Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels. BioResources 8(1): 1166–1185. https://doi.org/10.15376/biores.8.1.1166-1185
  • Qian, K.; Kumar, A.; Patil, K.; Bellmer, D.; Wang, D.; Yuan, W.; Huhnke, R.L. 2013. Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 6(8): 3972–3986. https://doi.org/10.3390/en6083972
  • Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. 2015. Recent advances in utilization of biochar. Renew Sustain Energy Rev 42: 1055–1064. https://doi.org/10.1016/j.rser.2014.10.074
  • Ramos-Carmona, S.; Pérez, J.F.; Pelaez-Samaniego, M.R.; Barrera, R.; Garcia-Perez, M. 2017. Effect of torrefaction temperature on properties of patula pine. Maderas-Cienc Tecnol 19(1): 39–50. https://doi.org/10.4067/S0718-221X2017005000004
  • De la Rosa, J.M.; Paneque, M.; Hilber, I.; Blum, F.; Knicker, H.E.; Bucheli, T.D. 2016. Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended agricultural soil from Southern Spain. J Soils Sediments 16(2): 557-565. https://doi.org/10.1007/s11368-015-1250-z
  • Singh, B.P.; Cowie, A.L.; Smernik, R.J. 2012. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46(21): 11770–11778. https://doi.org/10.1021/es302545b
  • Sohi, S.P. 2012. Carbon storage with benefits. Science 338(6110): 1034–1035. https://doi.org/10.1126/science.1225987
  • Tanure, M.M.C.; da Costa, L.M.; Huiz, H.A.; Fernandes, R.B.A.; Cecon, P.R.; Pereira Junior, J.D.; da Luz, J.M.R. 2019. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res 192: 164-173. https://doi.org/10.1016/j.still.2019.05.007
  • Trigo, C.; Cox, L.; Spokas, K. 2016. Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents. Sci Total Environ 566–567: 1454–1464. https://doi.org/10.1016/j.scitotenv.2016.06.027
  • Vamvuka, D.; Pitharoulis, M.; Alevizos, G.; Repouskou, E.; Pentari, D. 2009. Ash effects during combustion of lignite/biomass blends in fluidized bed. Renew Energy 34(12): 2662–2671. https://doi.org/10.1016/j.renene.2009.05.005
  • van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1): 235–246. https://doi.org/10.1007/s11104-009-0050-x
  • Wang, X.; Chi, Q.; Liu, X.; Wang, Y. 2019. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. Chemosphere 216: 698-706. https://doi.org/10.1016/j.chemosphere.2018.10.189
  • Wang, Y.; Yin, R.; Liu, R. 2014. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J Anal Appl Pyrolysis 110(1): 375–381. https://doi.org/10.1016/j.jaap.2014.10.006
  • Yang, X.B.; Ying, G.G.; Peng, P.A.; Wang, L.; Zhao, J.L.; Zhang, L.J.; Yuan, P.; He, H.P. 2010. Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58(13): 7915–7921. https://doi.org/10.1021/jf1011352
  • Yu, O.Y.; Harper, M.; Hoepfl, M.; Domermuth, D. 2017. Characterization of biochar and its effects on the water holding capacity of loamy sand soil: Comparison of hemlock biochar and switchblade grass biochar characteristics. Environ Prog Sustain Energy 36(5): 1474-1479. https://doi.org/10.1002/ep.12592
  • Zhang, Y.; Wang, J.; Feng, Y. 2021. The effects of biochar addition on soil physicochemical properties: A review. Catena 202(October 2020): 105284. https://doi.org/10.1016/j.catena.2021.105284
  • Zhao, B.; O’Connor, D.; Zhang, J.; Peng, T.; Shen, Z.; Tsang, D.C.W.; Hou, D. 2018. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J Clean Prod 174: 977–987. https://doi.org/10.1016/j.jclepro.2017.11.013