Financial boundary conditions in a continuous model with discrete-delay for pricing commodity futures and its application to the gold market

  1. Gómez-Valle, Lourdes 1
  2. López-Marcos, Miguel Ángel 1
  3. Martínez-Rodríguez, Julia 1
  1. 1 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Revista:
Chaos, Solitons & Fractals

ISSN: 0960-0779

Año de publicación: 2024

Volumen: 187

Páginas: 115476

Tipo: Artículo

DOI: 10.1016/J.CHAOS.2024.115476 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Chaos, Solitons & Fractals

Resumen

In this work, we approach the solution of a differential problem for pricing commodity futures when the spot price follows a stochastic diffusion process with memory, that is, it depends on two discrete times: the present instant and a delayed one. In this kind of models, a closed-form solution is not feasible to obtain and, in most of the cases, numerical methods should be applied. To this end, it is normal to introduce a bounded domain for the state variable, so suitable boundary conditions have to be established. The conditions based on mathematical reasons often introduce difficulties in the boundary and poor accuracy. Here, we propose new nonstandard boundary conditions based on some financial reasons and then, we face the numerical solution of the problem that arises. Some experiments are presented which show that the drawbacks in the behavior of the solutions are overcome, providing more accurate futures prices. This new procedure is implemented in order to obtain a more precise valuation of gold futures contracts traded on the Commodity Exchange Inc. (US).

Información de financiación

Financiadores

Referencias bibliográficas

  • Bessler, (2015), J Bank Financ, 60, pp. 1, 10.1016/j.jbankfin.2015.06.021
  • Hull, (2018)
  • Back, (1997), Int J Theor Appl Finance, 52, pp. 923
  • Bessembinder, (1995), J Finance, 50, pp. 361, 10.1111/j.1540-6261.1995.tb05178.x
  • Nielsen, (2004), Rev Deriv Res, 7, pp. 5, 10.1023/B:REDR.0000017026.28316.c8
  • Hilliar, (1995), Rev Financ, 50, pp. 27, 10.1111/fire.12059
  • Yan, (2002), Rev Deriv Res, 5, pp. 251, 10.1023/A:1020871616158
  • Gómez-Valle, (2017), J Comput Appl Math, 309, pp. 435, 10.1016/j.cam.2015.12.028
  • Fama, (1987), J Bus, 60, pp. 55, 10.1086/296385
  • Back, (2013), J Bank Financ, 37, pp. 273, 10.1016/j.jbankfin.2012.08.025
  • Lucia, (2002), Rev Deriv Res, 5, pp. 5, 10.1023/A:1013846631785
  • Cartea, (2005), Appl Math Finance, 12, pp. 313, 10.1080/13504860500117503
  • Lingfei, (2016), Quant Finance, 7, pp. 1089
  • Gómez-Valle, (2018), J Comput Appl Math, 309, pp. 435, 10.1016/j.cam.2015.12.028
  • Shreve, (2008)
  • Schwartz, (1997), J Finance, 52, pp. 923, 10.1111/j.1540-6261.1997.tb02721.x
  • Duffy, (2006)
  • Baamonde-Seoane, (2023), Commun Nonlinear Sci Numer Simul, 118, 10.1016/j.cnsns.2022.107066
  • Baamonde-Seoane, (2023), J Comput Appl Math, 422, 10.1016/j.cam.2022.114891
  • Haque, (2014), Resour Policy, 39, pp. 115, 10.1016/j.resourpol.2013.12.004
  • Aminrostamkolaee, (2017), Resour Policy, 52, pp. 296, 10.1016/j.resourpol.2017.04.004
  • Gómez-Valle, (2020), Math Methods Appl Sci, 43, pp. 7993, 10.1002/mma.5815
  • Oksendal, (2000)
  • Protter, (2007)
  • Kwok, (2008)
  • Gómez-Valle, (2023), Math Methods Appl Sci, pp. 1
  • Tambue, (2015), Commun Nonlinear Sci Numer Simul, 20, pp. 281, 10.1016/j.cnsns.2014.05.010
  • Nomikos, (2013), Transp Res E, 51, pp. 82, 10.1016/j.tre.2012.12.001
  • Agrawal, (2020), Mathematics, 8, pp. 1932, 10.3390/math8111932
  • Kloeden, (1992)
  • O’Connor, (2015), Int Rev Financ Anal, 41, pp. 186, 10.1016/j.irfa.2015.07.005
  • Geman, (2013), Resour Policy, 38, pp. 18, 10.1016/j.resourpol.2012.06.014
  • Hendersen, (2015), Rev Financ Stud, 28, pp. 1285, 10.1093/rfs/hhu091
  • Härdle, (1999), vol. 19
  • Glasserman, (2004)